Bis(acetylacetonato)bis(cyclooctene)ruthenium(II), cis-[Ru(acac)2-$\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}$]: a synthetic precursor to trans- and cis-bis(acetylacetonato)ruthenium(II) complexes \dagger

Martin A. Bennett,* Guandolina Chung, David C. R. Hockless, Horst Neumann and Anthony C. Willis

Research School of Chemistry, Australian National University, Canberra, A.C.T. 0200, Australia

Received 8th July 1999, Accepted 12th August 1999

Abstract

Reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ with zinc amalgam or zinc dust in hot THF containing some water in the presence of an excess of cyclooctene generated in solution cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$, which cannot be isolated in solid form but has been identified on the basis of its ${ }^{1} \mathrm{H}$ NMR spectrum. It is a useful synthetic precursor because the co-ordinated olefins are easily displaced by many ligands. Treatment with pyridine, tert-butyl isocyanide, tertiary phosphines, phosphites and triphenylarsine (L) at room temperature gave red-brown complexes $\operatorname{trans}-\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$, which isomerise in solution to the more stable cis compounds on heating. In contrast, the similarly prepared trimethylamine complex, trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right]$, does not undergo trans to cis isomerisation. Reaction of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ with acetonitrile or triphenylstibine ($\left.\mathrm{L}^{\prime}\right)$ gave monosubstitution products cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}{ }^{-}\right.$ $\left.\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}^{\prime}\right]$, which react on heating with an excess of L^{\prime} to give cis-[Ru(acac) $\left.)_{2} \mathrm{~L}^{\prime}{ }_{2}\right]$. Treatment of cis-[Ru(acac) $)_{2}{ }^{-}$ $\left.\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right](1 \mathrm{~mol})$ with $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}(\mathrm{dppm})(2 \mathrm{~mol})$ at room temperature gave trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{1}-\mathrm{dppm}\right)_{2}\right]$, whereas the ligands $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{PPh}_{2}(\mathrm{~L}-\mathrm{L}, m=2$, dppe; $\mathrm{m}=3$, dppp) under the same conditions gave oligomers $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{~L}-\mathrm{L})\right\}_{n}\right]$, which probably contain mutually trans-phosphorus atoms. On heating all three compounds are converted into cis-[Ru(acac) $\left.)_{2}(\mathrm{~L}-\mathrm{L})\right]$. Treatment of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{NMe}_{3}\right.$ or $\left.\mathrm{PPh}_{3}\right)$ with CO at room temperature and pressure gave trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO}) \mathrm{L}\right]$, which, in the case of $\mathrm{L}=\mathrm{PPh}_{3}$, isomerises to the cis compound on heating; reaction of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ with CO under the same conditions gave cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)\right]$ directly. The structures of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$, trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$, cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CNBu}^{t}\right)_{2}\right]$ (in the form of a molecular adduct with $\left.\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]\right)$, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ and trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{1}-\mathrm{dppm}\right)_{2}\right]$ have been determined by X-ray crystallography, and trends in the metal-ligand distances are discussed. The formation of trans-[Ru(acac $\left.)_{2} \mathrm{~L}_{2}\right]$ from cis-[Ru(acac $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ may proceed via a square-pyramidal intermediate $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$.

It has long been known that the chelating dienes cycloocta-1,5diene (cod) and bicyclo[2.2.1]hepta-2,5-diene (norbornadiene, nbd) react with solutions of ruthenium trichloride to give poorly soluble ruthenium(II) compounds $\left[\left\{\mathrm{RuCl}_{2}\left(\eta^{2}, \eta^{2}-\right.\right.\right.$ diene) $\left.\}_{n}\right]$, which are believed to have a polymeric structure consisting of chains of metal atoms each co-ordinated octahedrally by the diene and bridging chlorine atoms. ${ }^{1,2}$ These complexes are useful synthetic precursors because the bridges are readily cleaved and the diene is easily replaced by other ligands. However, potentially even more labile analogues containing two molecules of ethene or monoalkene in place of the diene are unknown. The blue solutions obtained by reduction of RuCl_{3} in aqueous hydrochloric acid have been reported to absorb one mole of ethene per ruthenium. ${ }^{3}$ The species formed may be the cation $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}$, the tosylate (toluene- p-sulfonate) salt of which has been isolated from the reaction of ethene (60 bar) with $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{OTs}]_{2}{ }^{4}$ Analogues containing 2,5dihydrofuran and 5,6-bis(methoxymethyl)-7-oxanorbornene have been obtained similarly from $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{OTs}]_{2}$, ${ }^{5,6}$ complexes of the type $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\eta^{2} \text {-alkene }\right)\right]^{2+}$ are intermediates in

[^0]the $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$-catalysed ring-opening metathesis polymerisation (ROMP) and isomerisation of olefins. ${ }^{5-7}$ The closely related pentammines, $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2} \text {-alkene }\right)\right]^{2+}$, are obtained by reduction of $\left[\mathrm{RuCl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$ with zinc amalgam in the presence of the alkene. ${ }^{8-10}$ Prolonged reaction of ethene (60 bar) with $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ gives the bis(ethene) salt, cis-[Ru$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right][\mathrm{OTs}]_{2}{ }^{4}$ and analogous chelate compounds $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\eta^{2}, \eta^{2} \text {-diene }\right)\right]^{2+}\left(\right.$ diene $=\operatorname{cod}^{11}$ or diallyl ether $\left.{ }^{6}\right)$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\eta^{2}, \eta^{2} \text {-diene }\right)\right]^{2+} \quad($ diene $=s$-trans-buta-1,3-diene, penta-1,4-diene or hexa-1,5-diene) ${ }^{12}$ have been described. Chelate monoalkene compounds have also been isolated, e.g.
 and $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{MeCH}=\mathrm{CHCH}_{2} \mathrm{COO}\right)_{2}\right]$ from pent-3-enoic acid. ${ }^{6}$

The existence of complexes containing only classical non- π acceptor ligands such as $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} in the co-ordination sphere as well as an alkene prompted us to search for neutral complexes of the type $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right] \quad(\mathrm{acac}=$ acetyl acetonate, $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}$) which, unlike the cationic species mentioned above, would be expected to be readily soluble in organic solvents. Here we describe the generation from $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ of the labile cyclooctene complex cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right] \mathbf{1}$ and its subsequent reactions with ligands.

Results

Treatment of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in THF containing $c a .5 \% \mathrm{v} / \mathrm{v}$ water with an excess of cyclooctene and either $c a .2 \%$ zinc amalgam
or activated zinc dust at room temperature gives initially a deep brown solution, which changes to red-brown after heating for a few hours; filtration gives a very air-sensitive, orange-red solution. The brown-black oily residue obtained after evaporation to small volume shows in its ${ }^{1} \mathrm{H}$ NMR spectrum in d_{6}-benzene two sharp 3 H singlets at $\delta 1.78$ and 1.96 due to acac methyl protons and a sharp 1 H singlet at $\delta 5.20$ due to the $\gamma-\mathrm{CH}$ proton, consistent with the presence of a cis-Ru(acac) $)_{2}$ group attached to two identical ligands. In addition to a symmetrical multiplet at $\delta 5.62$ due to residual free cyclooctene, there is a 2 H multiplet of similar appearance at $\delta 3.80$, which we assign to the olefinic protons of co-ordinated cyclooctene. The $c a .2$ ppm shift to low frequency is similar to those observed for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}(\delta \quad 3.57),{ }^{8} \quad$ cis $-\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}$ $(\delta 3.81),{ }^{4}$ and $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}(\delta 5.04)^{4}(c f . \delta 5.46$ for free $\mathrm{C}_{2} \mathrm{H}_{4}$). There are also well resolved multiplets at $\delta 1.6-1.8$ and 2.4 assignable to the CH_{2} protons of co-ordinated cyclooctene, which are distinguishable from broad singlets at $\delta 1.42$ and 2.06 due to the corresponding resonances of free cyclooctene.

The ${ }^{1} \mathrm{H}$ NMR data are consistent with the presence in solution of cis-[Ru(acac $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right] \mathbf{1}$, the co-ordinated cyclooctene of which clearly does not exchange rapidly with free cyclooctene on the NMR timescale. Although on one occasion a yellow-brown crystalline solid of this formula was isolated by cooling the reaction residue to $0^{\circ} \mathrm{C}$ overnight, the procedure was not reproducible. Attempts to remove the excess of cyclooctene in vacuo caused the appearance of additional peaks at $\delta 1.73$ (s), 2.04 (s) due to acac $\mathrm{CH}_{3}, \delta 5.09(\mathrm{~s}), 5.12$ (s) due to acac $\gamma-\mathrm{CH}$, and $\delta 4.64$ (symmetrical multiplet) due to coordinated cyclooctene. These signals disappeared when more cyclooctene was added and the original spectrum was reformed; hence the new peaks may be due to species such as $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)(\right.$ solv $\left.)\right]$ (solv $=\mathrm{H}_{2} \mathrm{O}$ or THF). Experiments in progress indicate that the ethene analogue of compound $\mathbf{1}$ can be generated by a similar procedure and that it is stable enough to be isolated. ${ }^{13}$ If the preparation is carried out with norbornadiene in place of cyclooctene the known complex $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{4}-\mathrm{nbd}\right)\right]^{14}$ can be isolated in $c a .50 \%$ yield.

Both cyclooctene ligands are displaced from solutions of complex 1 at room temperature by pyridine, tert-butyl isocyanide, various monodentate P -donors, and triphenylarsine to give red-brown complexes of the general type trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$, which isomerise to the more stable, more soluble, orange-brown cis compounds on heating in benzene, toluene or aromatic solvents of higher boiling point. The IR spectra of the complexes generally show four intense absorptions in the regions 1560 $1570,1500-1520,1430-1450$ and $1400-1410 \mathrm{~cm}^{-1}$, which are characteristic of bidentate, O-bonded acac. ${ }^{15}$ Although the IR spectra in these regions of corresponding trans and cis isomers do not differ significantly, the isomers are readily identified by their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, details of which are available as SUP 57625. As expected, the trans isomers show just one acac methyl singlet $\left[\delta\left({ }^{1} \mathrm{H}\right) 1.3-1.7, \delta\left({ }^{13} \mathrm{C}\right) 27-28\right]$, whereas the cis show two $\left[\delta\left({ }^{1} \mathrm{H}\right) 1.6-2.1, \delta\left({ }^{13} \mathrm{C}\right) 27-28\right]$. In addition, the trans isomers show just one $\mathrm{C}=\mathrm{O}$ resonance in their ${ }^{13} \mathrm{C}$ NMR spectra in the region of $\delta 184$, whereas the cis show two. The spectra of both trans- and cis-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]$ complexes show only one acac $\gamma-\mathrm{CH}$ resonance in the regions of $\delta 5.0\left({ }^{1} \mathrm{H}\right)$ and $100\left({ }^{13} \mathrm{C}\right)$; for a given pair, this resonance is always more shielded in the ${ }^{1} \mathrm{H}$ NMR spectrum and less shielded in the ${ }^{13} \mathrm{C}$ NMR spectrum for the trans than for the cis isomer. The configurations of the cis and trans isomers of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right] \quad\left(\mathrm{L}=\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}\right.$ or $\left.\mathrm{PMePh}_{2}\right)$ have been confirmed by X-ray crystallographic analysis (see below).

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the tertiary phosphine complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ show the expected singlets; those of the trans isomers are always $c a .20 \mathrm{ppm}$ more shielded than those of the corresonding cis, which is opposite to the trend observed in cis- and trans-[$\left.\mathrm{PtCl}_{2} \mathrm{~L}_{2}\right]$. ${ }^{16-18}$ These data also are available as SUP 57625. Other features of the NMR spectra of the tertiary
phosphine complexes are consistent with the assigned geometries. For the methylphosphine complexes trans-[Ru(acac) $)_{2} \mathrm{~L}_{2}$] ($\mathrm{L}=\mathrm{PMe}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}$ or PMePh_{2}), the PMe resonance appears as a 1:2:1 triplet in both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra as a consequence of the expected strong coupling between the equivalent, mutually trans ${ }^{31} \mathrm{P}$ nuclei ${ }^{19-21}$ (for example, ${ }^{2} J_{\mathrm{PP}}$ values of 308 and 229 Hz have been reported for isomers of the type $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{Bu}_{2}^{\mathrm{t}} \mathrm{PH}\right)_{2}\right]$ in which the secondary phosphine ligands are trans ${ }^{22}$). For the complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ $\left(\mathrm{L}=\mathrm{PMe}_{3}\right.$ or $\left.\mathrm{PMePh}_{2}\right)$ the PMe resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum consists of a filled-in doublet as a consequence of the much smaller value of ${ }^{2} J_{\mathrm{PP}}$ (probably ca. $20-30 \mathrm{~Hz}$); in cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ the PMe resonance appears as a pair of filled-in doublets because the PMe groups are diastereotopic. As in the cases of planar bis(tertiary phosphine) complexes of palladium(II) and platinum(II), ${ }^{21,23}$ the corresponding ${ }^{13} \mathrm{C}$ resonances are less diagnostic, consisting of a triplet ($\mathrm{L}=$ $\left.\mathrm{PMe}_{3}\right)$, a pair of triplets $\left(\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}\right)$, and a doublet of doublets with a pair of weak outer lines $\left(\mathrm{L}=\mathrm{PMePh}_{2}\right)$. The CH_{2} resonance in the ${ }^{13} \mathrm{C}$ NMR spectra of the complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ is a $1: 2: 1$ triplet for the trans isomer and a doublet of doublets with weak outer lines for the cis.

The trans to cis isomerisations of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}\right.$ or PMe_{3}) require more forcing conditions (refluxing xylene and mesitylene, respectively) than those of other members of the series. The isolated products contain a small amount of a carbonyl complex, probably cis-[Ru(acac) $\left.)_{2}(\mathrm{CO}) \mathrm{L}\right]$, which can be detected in the mass spectra and by the $v(\mathrm{CO})$ band at $c a$. $1940 \mathrm{~cm}^{-1}$ in the IR spectra. The CO may be formed by degradation of the acac ligands, although this has not been proved.

Surprisingly, the cyclooctene ligands of complex 1 are also displaced at room temperature by an excess of trimethylamine to give trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right]$ as a brownish green solid. The same compound is obtained more conveniently by zinc amalgam reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in aqueous THF in the presence of an excess of trimethylamine. The EI-mass spectrum shows a very weak parent ion peak together with peaks arising from the successive loss of NMe_{3}. The trans configuration follows from the ${ }^{1} \mathrm{H}$ NMR spectrum, which shows singlets at $\delta 1.82(12 \mathrm{H})$, $2.16(18 \mathrm{H})$ and $5.37(2 \mathrm{H})$ in d_{6}-benzene due to the acac methyl, NMe_{3} and acac methine protons, respectively. The corresponding resonances in the ${ }^{13} \mathrm{C}$ NMR spectrum are at $\delta 28.11,53.93$ and 101.32, and there is also a singlet at $\delta 183.5$ due to the equivalent $\mathrm{C}=\mathrm{O}$ groups. The compound can be sublimed with some decomposition at $60^{\circ} \mathrm{C} / 10^{-4} \mathrm{mmHg}$ to give a brown oil that slowly solidifies.

Unlike other members of the trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ series, the NMe_{3} complex does not undergo trans to cis isomerisation in refluxing aromatic solvents. It is apparently unreactive towards cyclooctene and phenylacetylene, and reacts only slowly with triphenylphosphine to give trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. However, treatment with CO displaces one of the NMe_{3} ligands to give trans-[Ru(acac) $\left.)_{2}(\mathrm{CO})\left(\mathrm{NMe}_{3}\right)\right]$ as a dark brown solid that smells strongly of the amine. The presence of a terminal CO ligand is evident from a very strong $v(\mathrm{CO})$ band at $1920 \mathrm{~cm}^{-1}(\mathrm{KBr}$ disc) [1953 $\mathrm{cm}^{-1}\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$] in the IR spectrum, a signal at $\delta 212.2$ in the ${ }^{13} \mathrm{C}$ NMR spectrum, and a parent ion peak at $m / z 387$ in the FAB-mass spectrum. The EI-mass spectrum did not show this parent ion peak but did contain peaks at $m / z 655,627$ and 599 apparently arising from $\mathrm{Ru}_{2}(\mathrm{acac})_{4}$ fragments. The ${ }^{1} \mathrm{H}$ NMR spectrum of the compound in d_{6}-benzene shows singlets at $\delta 1.71(12 \mathrm{H}), 2.24(9 \mathrm{H})$ and $5.08(2 \mathrm{H})$ due to the acac methyl, NMe_{3}, and acac methine protons, respectively, and is therefore consistent with the formulation. The corresponding peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ are at $\delta 27.09,49.64$ and 100.48 , and the acac $\mathrm{C}=\mathrm{O}$ resonance is at $\delta 199.0$.

Carbon monoxide also reacts readily at room temperature with trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to give trans-[Ru(acac) $)_{2}(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right)$] as yellow microcrystals, which show a singlet at $\delta 16.1$ in the ${ }^{31} \mathrm{P}$ NMR spectrum. The complex cis-[Ru(acac $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$
fails to react with CO under the same conditions. As expected for a trans isomer, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra show singlet acac methyl and methine resonances. In addition, the ${ }^{13} \mathrm{C}$ NMR spectrum contains a singlet at $\delta 188.9$ due to the acac $\mathrm{C}=\mathrm{O}$ groups and a doublet at $\delta 208.0\left({ }^{2} J_{\mathrm{PC}}=123 \mathrm{~Hz}\right)$ due to $\mathrm{C}=\mathrm{O}$. The latter peak was measured on the compound made from ${ }^{13} \mathrm{CO}$ and the coupling was reproduced in the ${ }^{31} \mathrm{P}$ NMR spectrum. Although the IR spectrum shows, as expected, one intense $\nu(\mathrm{CO})$ band [1940 (KBr), $1966\left(\mathrm{C}_{6} \mathrm{H}_{12}\right), 1959$ (toluene), $1956\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 1935 \mathrm{~cm}^{-1}$ (THF)], other, less intense absorptions are also observed in the region $1935-1955 \mathrm{~cm}^{-1}$ for which we have no adequate explanation; they appear to be due to $v(\mathrm{CO})$ modes because they exhibit the expected shifts to low frequency in the spectrum of the ${ }^{13} \mathrm{CO}$-labelled compound. The EI-mass spectrum of trans-[Ru(acac) $\left.)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ contains peaks at $m / z 590$ and 562 due to $[M]^{+}$and $[M-\mathrm{CO}]^{+}$but occasionally we observed peaks in the FAB-mass spectrum at $m / z 656,628$ and 600, apparently due to fragments containing $\mathrm{Ru}_{2}(\mathrm{acac})_{4}$. These phenomena are being investigated further.

When trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ is heated under reflux in toluene it is converted into the yellow-brown cis isomer, whose ${ }^{31} \mathrm{P}$ chemical shift, $\delta 53.4$, is fortuitously close to that of cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. As expected for the formulation, the ${ }^{1} \mathrm{H}$ NMR spectrum shows four acac methyl and two acac methine singlet resonances. In the ${ }^{13} \mathrm{C}$ NMR spectrum only two of the expected four acac methyl singlets are observed, presumably because of accidental overlap, but there are two acac methine resonances in the region of $\delta 99-100$ and four acac $\mathrm{C}=\mathrm{O}$ resonances in the region of $\delta 185-189$. In the ${ }^{13} \mathrm{C}$ NMR spectrum of the ${ }^{13} \mathrm{CO}$ complex there is a doublet due to $\mathrm{C}=\mathrm{O}$ at $\delta 207.8$ $\left({ }^{2} J_{\mathrm{PC}}=18.5 \mathrm{~Hz}\right)$, this coupling being reproduced in the ${ }^{31} \mathrm{P}$ NMR spectrum. The magnitude of ${ }^{2} J_{\mathrm{PC}}$ is consistent with a cis arrangement of the CO and PPh_{3} ligands. The EI-mass spectrum shows the expected $[M]^{+}$and $[M-\mathrm{CO}]^{+}$peaks and the IR spectrum contains just one strong $v(\mathrm{CO})$ band at $c a .1950$ cm^{-1}.

The reactions of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{PMePh}_{2}\right)$ with PMe_{3} at room temperature have also been investigated briefly by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. In both cases L is displaced and some trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ is formed. The main species present in both cases is trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PMe}_{3}\right) \mathrm{L}\right]$, characterised by an AB quartet with a ${ }^{2} J_{\mathrm{PP}^{\prime}}$ value of $c a .400 \mathrm{~Hz}$. The ${ }^{1} \mathrm{H}$ NMR spectra of the solutions also contain a new singlet at $\delta c a .4 .8$ that can be assigned to the acac methine protons of the mixed ligand complex.

The triphenylarsine complex trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ also reacts readily with CO ($3 \mathrm{bar)}$ at room temperature to give, as the main product, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)\right]$ as a bright yellow solid. Its IR spectrum shows one intense $v(\mathrm{CO})$ band at ca. $1940 \mathrm{~cm}^{-1}$ and the EI-mass spectrum contains peaks due to $[M]^{+}$and $[M-\mathrm{CO}]^{+}$. The cis configuration is assigned on the basis that there are four acac methyl and two acac methine resonances in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. In addition, there are four acac $\mathrm{C}=\mathrm{O}$ resonances between $\delta 186$ and 189 and a singlet due to $\mathrm{C}=\mathrm{O}$ at $\delta 208.2$. There was no evidence in this case for the formation of the trans isomer as a intermediate.

The tendency to from trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ as a kinetic product from cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ is evident even in the reactions with bidentate ditertiary phosphines (Scheme 1). The reaction with bis(diphenylphosphino)methane (dppm) in a $1: 2$ mol ratio at $0{ }^{\circ} \mathrm{C}$ precipitates almost quantitatively trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{1}-\mathrm{dppm}\right)_{2}\right]$ as a red-brown solid whose structure has been determined by X-ray crystallographic analysis (see below). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra show the expected features due to the acac groups and the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum consists of a pair of triplets at $\delta 36.6$ and -28.3 , each with a separation of 14 Hz between the outer arms, due to the bound and free phosphorus atoms. The compound tends to lose dppm in solution with formation of the chelate complex cis-[Ru(acac) $\left.)_{2}(\mathrm{dppm})\right]$ (δ_{P} 17.7), which is formed directly in high yield by treatment of

Scheme 1 (i) dppm (1 equivalent); (ii) dppm (2 equivalents); (iii) heat; (iv) dppe $(m=2)$, $\operatorname{dppp}(m=3)$.

1 with an equimolar amount of dppm. Treatment of trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{1}-\mathrm{dppm}\right)_{2}\right]$ with CO also causes displacement of dppm, identified by its characteristic ${ }^{31} \mathrm{P}$ resonance at $\delta-22.4$. The main complex present is believed to be trans-[Ru(acac) $2_{2}-$ (CO) $\left(\eta^{1}\right.$-dppm)], which shows a $v(\mathrm{CO})$ band at $1957 \mathrm{~cm}^{-1}$ and a pair of doublets at $\delta 14.7$ and $-28.9\left({ }^{2} J_{\mathrm{PP}}=37.8 \mathrm{~Hz}\right)$ due to the co-ordinated and free phosphorus atoms. Attempts to isolate this compound caused reformation of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{1}-\right.\right.$ $\left.\mathrm{dppm})_{2}\right]$. The cis complex $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})\right]$ has been identified by microanalysis, mass spectrometry, and by its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

Treatment of complex 1 with 1,2-bis(diphenylphosphino)ethane (dppe) causes immediate precipitation of a yellowbrown solid of empirical formula $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppe})\right]$ whose EImass spectrum shows a parent-ion peak. The solid is insoluble in all common organic solvents and its IR spectrum contains strong bands typical of chelate O-bonded acac at 1560,1510 , 1435 and $1405 \mathrm{~cm}^{-1}$. On heating in a mixture of xylene and di-n-butyl ether the solid slowly dissolves to give an orange solution from which cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppe})\right]$ can be isolated as a bright yellow powder. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of this compound show the expected two acac methyl and one acac methine resonance and the ${ }^{13} \mathrm{C}$ NMR spectrum also contains two $\mathrm{C}=\mathrm{O}$ resonances in the region of $\delta 185$. The initially formed brown solid is, therefore, the kinetic product, which presumably is an isomer or a mixture of isomers of oligomeric structure containing trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\right]$ units connected by bridging dppe units.

The reaction of complex 1 with 1,3-bis(diphenylphosphino)propane (dppp) in THF proceeds similarly to that with dppe except that the initially formed oligomer is more soluble. Its ${ }^{1} \mathrm{H}$ NMR spectrum contains many overlapping singlets due to acac methyl protons in the region $\delta 1.35-1.48$, four singlets due to acac methine protons in the region $\delta 4.6-4.8$, and broad multiplets in the regions of $\delta 2.5$ and $7.0-7.65$ due to the methylene and aromatic protons, respectively, of dppp. On prolonged heating in THF the compound is converted into cis-[Ru(acac) 2^{-} (dppp)].

The reaction of complex 1 with 2,2'-bipyridyl (bipy) gives cis-[Ru(acac) $\left.)_{2}(\mathrm{bipy})\right]$ as a dark green solid directly at room temperature. This compound has been made previously by a

Fig. 1 Molecular structure of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{CNBu}^{t}\right)_{2}\right]$. Ellipsoids represent 50% probability levels.
multi-step procedure starting from $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, ${ }^{24}$ but the present method is probably more convenient.
So far we have been unable to isolate or detect intermediate monosubstitution products $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]$ with the monodentate P-donors discussed above. However, from the reaction of complex 1 with acetonitrile or triphenylstibine at room temperature we could isolate cis-[Ru(acac $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}^{\prime}\right]$ ($\mathrm{L}^{\prime}=\mathrm{MeCN}$ or SbPh_{3}) as stable, yellow-brown solids. The cis geometry is evident from the ${ }^{1} \mathrm{H}$ NMR spectra, which show four acac methyl and two acac methine singlets, and from the presence of four acac $\mathrm{C}=\mathrm{O}$ resonances in the ${ }^{13} \mathrm{C}$ NMR spectra. The inequivalent olefinic protons appear as a pair of multiplets in the region $\delta 4.5-5.0$ and the corresponding pair of carbon resonances is observed in the regions $\delta 83-86\left(\mathrm{~L}^{\prime}=\mathrm{MeCN}\right)$ and 73-79 $\left(\mathrm{L}^{\prime}=\mathrm{SbPh}_{3}\right)$. The methyl resonance of co-ordinated acetonitrile in $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mathrm{NCMe})\right]$ displays a notable shielding in $\mathrm{C}_{6} \mathrm{D}_{6}\left[\delta_{\mathrm{H}} 2.37\left(\mathrm{CDCl}_{3}\right), 0.73\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) ; \delta_{\mathrm{C}} 4.61\right.$ $\left.\left(\mathrm{CDCl}_{3}\right), 2.33\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)\right]$; a similar effect is observed for the MeCN resonance of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{NCMe})_{2}\right]\left[\delta_{\mathrm{H}} 2.53\left(\mathrm{CDCl}_{3}\right)\right.$, $1.06\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$. Both monosubstitution products are converted into the corresponding cis complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}^{\prime}{ }_{2}\right](\mathrm{L}=$ MeCN or SbPh_{3}) on heating with an excess of the appropriate ligand; the trans isomers could not be detected as intermediates under these conditions.

Molecular structures

The molecular geometries of trans- and cis-[Ru(acac) $)_{2}$ $\left.\left(\mathrm{CNBu}^{t}\right)_{2}\right]$, trans- and cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$, and trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})_{2}\right]$ are shown in Figs. 1-5, respectively, together with atom numbering. Selected interatomic distances and angles are listed in Tables 1-5. The crystals of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}{ }^{-}\right.$ $\left.\left(\mathrm{CNBu}^{t}\right)_{2}\right]$ were obtained in the form of a $1: 1$ molecular adduct with $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ which had presumably been formed by partial oxidative degradation during the crystallisation; there is no obvious interaction between the two species in the crystal. In all cases, the ligand environment about the metal centre is close to octahedral and the configurations agree with those deduced on the basis of NMR data. In trans- and cis-[Ru(acac) $\left.)_{2}\left(\mathrm{CNBu}^{t}\right)_{2}\right]$ the isocyanide groups are almost linear, the deviations from linearity at the carbon and nitrogen atoms being at most 6 and 10°, respectively. The Ru-C distance in the trans isomer

Fig. 2 Molecular structure of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$. Ellipsoids represent 50% probability levels.

Fig. 3 Molecular structure of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$. Ellipsoids represent 50% probability levels.
[2.006(5), 2.021(6) \AA for two independent molecules] is significantly greater than that in the cis [1.920(5), 1.910(6) \AA in one molecule]. These distances fall in the range of 1.90-2.04 \AA that has been found in various octahedral and half-sandwich complexes of ruthenium(II) containing tert-butyl isocyanide, e.g. $\left[\mathrm{RuCl}(\mathrm{Ph})(\mathrm{CO})\left(\mathrm{CNBu}^{\mathrm{t}}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{25}$ and $\left[\mathrm{RuI}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)-\right.$ $\left.\left(\mathrm{CNBu}^{t}\right)\left(\mathrm{PPh}_{3}\right)\right] .{ }^{26} \mathrm{~A}$ similar trans-bond weakening influence is evident from a comparison of the $\mathrm{Ru}-\mathrm{P}$ distances in trans- and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right][2.343(1), 2.346(1) \AA$ in independent molecules of the trans isomer; $2.2765(9) \AA$ in the cis]. The distances in the trans isomer are significantly shorter than for the mutually trans $-\mathrm{PMePh}_{2}$ ligands in both cis- $\left[\mathrm{RuCl}_{2}-\right.$ $\left.(\mathrm{CO})\left(\mathrm{PMePh}_{2}\right)_{3}\right][2.407(8), 2.433(8) \AA]$ and trans- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})\right.$ $\left.\left(\mathrm{PMePh}_{2}\right)_{3}\right][2.403(4) \AA]^{27}$ Also, the $\mathrm{Ru}-\mathrm{P}$ distance in cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ is significantly less than for $\mathrm{Ru}-\mathrm{P}$ trans to Cl in cis- $\left[\mathrm{RuCl}_{2}(\mathrm{CO})\left(\mathrm{PMePh}_{2}\right)_{3}\right][2.327(7) \AA]$. These trends can probably be traced to the relatively uncrowded co-ordin-

Table 1 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]^{a}$

$\mathrm{Ru}(1)-\mathrm{O}(11)$	$2.063(3)$	$\mathrm{Ru}(2)-\mathrm{O}(21)$	$2.072(3)$
$\mathrm{Ru}(1)-\mathrm{O}(12)$	$2.061(4)$	$\mathrm{Ru}(2)-\mathrm{O}(22)$	$2.066(3)$
$\mathrm{Ru}(1)-\mathrm{C}(15)$	$2.006(5)$	$\mathrm{Ru}(2)-\mathrm{C}(25)$	$2.021(6)$
$\mathrm{C}(15)-\mathrm{N}(1)$	$1.147(8)$	$\mathrm{C}(25)-\mathrm{N}(2)$	$1.145(7)$
$\mathrm{C}(16)-\mathrm{N}(1)$	$1.455(9)$	$\mathrm{C}(26)-\mathrm{N}(2)$	$1.461(8)$
$\mathrm{C}(11)-\mathrm{O}(11)$	$1.265(6)$	$\mathrm{C}(21)-\mathrm{O}(21)$	$1.259(5)$
$\mathrm{C}(13)-\mathrm{O}(12)$	$1.270(6)$	$\mathrm{C}(23)-\mathrm{O}(22)$	$1.266(6)$
$\mathrm{O}(11)-\mathrm{Ru}(1)-\mathrm{O}(12)$	$93.1(1)$	$\mathrm{O}(21)-\mathrm{Ru}(2)-\mathrm{O}(22)$	$93.4(1)$
$\mathrm{O}(11)-\mathrm{Ru}(1)-\mathrm{C}(15)$	$90.4(2)$	$\mathrm{O}(21)-\mathrm{Ru}(2)-\mathrm{C}(25)$	$91.8(2)$
$\mathrm{O}(11)-\mathrm{Ru}(1)-\mathrm{O}\left(12^{\prime}\right)$	$86.9(1)$	$\mathrm{O}(21)-\mathrm{Ru}(2)-\mathrm{O}\left(22^{\prime \prime}\right)$	$86.6(1)$
$\mathrm{O}(11)-\mathrm{Ru}(1)-\mathrm{C}\left(15^{\prime}\right)$	$89.6(2)$	$\mathrm{O}(21)-\mathrm{Ru}(2)-\mathrm{C}\left(25^{\prime \prime}\right)$	$88.2(2)$
$\mathrm{O}(12)-\mathrm{Ru}(1)-\mathrm{C}(15)$	$88.4(2)$	$\mathrm{O}(22)-\mathrm{Ru}(2)-\mathrm{C}(25)$	$94.2(2)$
$\mathrm{O}(12)-\mathrm{Ru}(1)-\mathrm{C}\left(15^{\prime}\right)$	$91.6(2)$	$\mathrm{O}(22)-\mathrm{Ru}(2)-\mathrm{C}\left(25^{\prime \prime}\right)$	$85.8(2)$
$\mathrm{Ru}(1)-\mathrm{C}(15)-\mathrm{N}(1)$	$177.6(5)$	$\mathrm{Ru}(2)-\mathrm{C}(25)-\mathrm{N}(2)$	$173.6(4)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	$175.8(5)$	$\mathrm{C}(25)-\mathrm{N}(2)-\mathrm{C}(26)$	$171.1(5)$

${ }^{a}$ Primes and double primes indicate atoms generated by the symmetry operations $(1-x, 1-y, 1-z)$ and $(1-x, 1-y,-z)$, respectively.

Fig. 4 Molecular structure of cis-[Ru(acac $\left.)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$. Ellipsoids represent 50% probability levels.

Fig. 5 Molecular structure of trans-[Ru(acac) $\left.)_{2}\left(\eta^{1}-\mathrm{dppm}\right)_{2}\right]$. Ellipsoids represent 30% probability levels.
ation environment in the bis(acetylacetonato)ruthenium(II) complexes.

The $\mathrm{Ru}-\mathrm{O}$ (acac) bond lengths are generally in the range 2.06-2.07 A, similar to those in the $\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{2}$ chelate complexes of $o-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}{ }^{28}$ and $o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}{ }^{29}$ and, as expected, greater than those in $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]^{30}$ and the $\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{2}$ complexes of the unsaturated amines $(c a .2 .00 \AA)$. In cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$, however, the $\mathrm{Ru}-\mathrm{O}$ distances opposite $\mathrm{PMePh}_{2}[2.104(2) \AA]$ are significantly greater than those trans to the acac oxygen atoms [2.072(2) \AA], consistent with the higher trans influence of the tertiary phosphine. A similar though smaller effect is observed in cis-[Ru(acac) 2_{2}

Table 2 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2^{-}}\right.$ $\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}$] in its $1: 1$ adduct with $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$

$\mathrm{Ru}(1)-\mathrm{O}(111)$	$2.093(4)$	$\mathrm{Ru}(1)-\mathrm{O}(112)$	$2.057(4)$
$\mathrm{Ru}(1)-\mathrm{O}(121)$	$2.064(4)$	$\mathrm{Ru}(1)-\mathrm{O}(122)$	$2.091(3)$
$\mathrm{Ru}(1)-\mathrm{C}(115)$	$1.920(5)$	$\mathrm{Ru}(1)-\mathrm{C}(125)$	$1.910(6)$
$\mathrm{C}(115)-\mathrm{N}(11)$	$1.155(7)$	$\mathrm{C}(125)-\mathrm{N}(12)$	$1.164(8)$
$\mathrm{C}(116)-\mathrm{N}(11)$	$1.462(8)$	$\mathrm{C}(126)-\mathrm{N}(12)$	$1.448(8)$
$\mathrm{C}(111)-\mathrm{O}(111)$	$1.268(7)$	$\mathrm{C}(121)-\mathrm{O}(121)$	$1.265(8)$
$\mathrm{C}(113)-\mathrm{O}(112)$	$1.270(6)$	$\mathrm{C}(123)-\mathrm{O}(122)$	$1.263(8)$
$\mathrm{O}(111)-\mathrm{Ru}(1)-\mathrm{O}(112)$	$91.6(2)$	$\mathrm{O}(111)-\mathrm{Ru}(1)-\mathrm{O}(121)$	$86.7(2)$
$\mathrm{O}(111)-\mathrm{Ru}(1)-\mathrm{O}(122)$	$83.6(1)$	$\mathrm{O}(111)-\mathrm{Ru}(1)-\mathrm{C}(115)$	$93.2(2)$
$\mathrm{O}(111)-\mathrm{Ru}(1)-\mathrm{C}(125)$	$172.0(2)$	$\mathrm{O}(112)-\mathrm{Ru}(1)-\mathrm{O}(121)$	$177.2(1)$
$\mathrm{O}(112)-\mathrm{Ru}(1)-\mathrm{O}(122)$	$85.9(2)$	$\mathrm{O}(112)-\mathrm{Ru}(1)-\mathrm{C}(115)$	$92.1(2)$
$\mathrm{O}(112)-\mathrm{Ru}(1)-\mathrm{C}(125)$	$89.8(2)$	$\mathrm{O}(121)-\mathrm{Ru}(1)-\mathrm{O}(122)$	$91.7(2)$
$\mathrm{O}(121)-\mathrm{Ru}(1)-\mathrm{C}(115)$	$90.2(2)$	$\mathrm{O}(121)-\mathrm{Ru}(1)-\mathrm{C}(125)$	$91.6(2)$
$\mathrm{O}(112)-\mathrm{Ru}(1)-\mathrm{C}(115)$	$176.2(2)$	$\mathrm{O}(122)-\mathrm{Ru}(1)-\mathrm{C}(125)$	$88.6(2)$
$\mathrm{C}(115)-\mathrm{Ru}(1)-\mathrm{C}(125)$	$94.6(2)$		

Table 3 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.343(1)$	$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.346(1)$
$\mathrm{Ru}(1)-\mathrm{O}(11)$	$2.060(3)$	$\mathrm{Ru}(2)-\mathrm{O}(21)$	$2.064(2)$
$\mathrm{Ru}(1)-\mathrm{O}(12)$	$2.057(3)$	$\mathrm{Ru}(2)-\mathrm{O}(22)$	$2.060(3)$
$\mathrm{P}(1)-\mathrm{C}(106)$	$1.828(4)$	$\mathrm{P}(2)-\mathrm{C}(206)$	$1.832(4)$
$\mathrm{P}(1)-\mathrm{C}(112)$	$1.837(4)$	$\mathrm{P}(2)-\mathrm{C}(212)$	$1.816(4)$
$\mathrm{P}(1)-\mathrm{C}(118)$	$1.816(4)$	$\mathrm{P}(2)-\mathrm{C}(218)$	$1.816(4)$
$\mathrm{C}(101)-\mathrm{O}(11)$	$1.273(4)$	$\mathrm{C}(201)-\mathrm{O}(21)$	$1.271(4)$
$\mathrm{C}(104)-\mathrm{O}(12)$	$1.273(4)$	$\mathrm{C}(204)-\mathrm{O}(22)$	$1.266(4)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(11)$	$88.72(1)$	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}(21)$	$89.49(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}\left(11^{\prime}\right)$	$91.28(7)$	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}\left(21^{\prime \prime}\right)$	$90.51(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(12)$	$90.22(7)$	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}(22)$	$93.79(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}\left(12^{\prime}\right)$	$89.78(7)$	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}\left(22^{\prime \prime}\right)$	$86.21(7)$
$\mathrm{O}(11)-\mathrm{Ru}(1)-\mathrm{O}(12)$	$94.00(10)$	$\mathrm{O}(21)-\mathrm{Ru}(2)-\mathrm{O}(22)$	$93.48(10)$
$\mathrm{O}(11)-\mathrm{Ru}(1)-\mathrm{O}\left(12^{\prime}\right)$	$86.00(10)$	$\mathrm{O}(21)-\mathrm{Ru}(2)-\mathrm{O}\left(22^{\prime \prime}\right)$	$86.53(10)$

${ }^{a}$ Primes and double primes indicate atoms generated by the symmetry operations $(-x,-y,-z)$ and $\left(\frac{1}{2}-x\right),\left(\frac{1}{2}-y\right),\left(\frac{1}{2}-z\right)$, respectively.

Table 4 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2^{-}}\right.$ $\left.\left(\mathrm{PMePh}_{2}\right)_{2}\right]^{a}$

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.2765(9)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.072(2)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.104(2)$	$\mathrm{P}(1)-\mathrm{C}(6)$	$1.835(3)$
$\mathrm{P}(1)-\mathrm{C}(12)$	$1.833(3)$	$\mathrm{P}(1)-\mathrm{C}(18)$	$1.828(3)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.269(3)$	$\mathrm{C}(4)-\mathrm{O}(2)$	$1.260(4)$
		$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$98.38(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}\left(1^{\prime}\right)$	$96.23(5)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.63(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}\left(1^{\prime}\right)$	$86.03(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}\left(1^{\prime}\right)$	$173.4(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}\left(2^{\prime}\right)$	$172.62(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}\left(2^{\prime}\right)$	$84.75(8)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.30(8)$		
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}\left(2^{\prime}\right)$	$82.7(1)$		

${ }^{a}$ Primes indicate atoms generated by the symmetry operation $(-x, y$, $\frac{1}{2}-z$).
$\left.\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]\left[2.092 \AA\right.$ (av.) trans to $\mathrm{CNBu}^{\mathrm{t}}$ vs. $2.060 \AA$ (av.) trans to O (acac)].

The molecular structure of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})_{2}\right] \cdot 2 \mathrm{CH}_{2}-$ $\mathrm{Cl}_{2} \ddagger$ confirms the presence of two monodentate dppm ligands, the pendant $\mathrm{CH}_{2} \mathrm{PPh}_{2}$ groups being in an anti orientation. The $\mathrm{Ru}-\mathrm{P}$ distance $[2.377(1) \AA$] is slightly longer than those in trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ and in $\left[\mathrm{RuCl}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\eta^{1}-\mathrm{dppm}\right)\right]$ $\left[2.319(2) \AA A^{31} .^{31}\right.$ The metrical parameters for $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in its adduct with cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CNBu}^{t}\right)_{2}\right]$ are similar to those derived from various recent structural determinations of the pure compound. ${ }^{30}$

[^1]Table 5 Selected bond distances (\AA) and angles (${ }^{\circ}$) for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})_{2}\right]^{a}$

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.377(1)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.067(2)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.066(2)$	$\mathrm{P}(1) \cdots \mathrm{P}(2)$	$3.198(1)$
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.833(3)$	$\mathrm{P}(1)-\mathrm{C}(12)$	$1.832(4)$
$\mathrm{P}(1)-\mathrm{C}(18)$	$1.830(3)$	$\mathrm{P}(2)-\mathrm{C}(18)$	$1.866(4)$
$\mathrm{P}(2)-\mathrm{C}(19)$	$1.832(4)$	$\mathrm{P}(2)-\mathrm{C}(25)$	$1.835(4)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.272(4)$	$\mathrm{C}(4)-\mathrm{O}(2)$	$1.282(4)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$89.91(7)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}\left(1^{\prime}\right)$	$90.09(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$88.22(7)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}\left(2^{\prime}\right)$	$91.78(7)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.45(9)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}\left(2^{\prime}\right)$	$87.55(9)$
Primes indicate atoms generated by symmetry operation $(-x,-y,-z)$			

Discussion

The formation of $c i s-\left[\operatorname{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right] \mathbf{1}$ by zinc amalgam or zinc dust reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in the presence of cyclooctene provides a further example of the ability of monomeric ruthenium(II) bearing saturated ligands to bind unsaturated molecules and reflects the π-donor ability of this metal ion. ${ }^{32}$ The procedure can probably be extended to other alkenes and alkynes. We have used it previously to make the $1,2,5,6 \eta-$ cyclooctatetraene complex $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}, \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{8}\right)\right]^{33}$ as well as chelate alkene and alkyne complexes such as $\left[\mathrm{Ru}(\mathrm{acac})_{2}-\right.$ $\left.\left(o-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]^{28}$ and $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\left.\mathrm{NMe}_{2}\right)\right] .{ }^{29}$ trans $-\eta^{2}, \eta^{2}$-Diene complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\right.$ diene $\left.)\right]$ have been prepared from $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ by reduction with activated zinc dust in ethanol, ${ }^{34,35}$ but this system is not suitable for the preparation of complex $\mathbf{1}$, which is rapidly decomposed by ethanol. In the first step $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ is probably reduced to $\left[\operatorname{Ru}(\mathrm{acac})_{3}\right]^{-,},{ }^{36,37}$ which in turn reacts on heating with the alkene according to eqn. (1). The presence of a small amount of water

$$
\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]^{-}+2 \mathrm{C}_{8} \mathrm{H}_{14} \xrightarrow{\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]+\mathrm{acac}^{-}}
$$

is necessary for the formation of the cyclooctene complex, possibly because it increases the reducing power of the zinc by solvation of Zn^{2+}.

The ready displacement of cyclooctene from cis-[Ru(acac) 2_{2} $\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}$] by monodentate ligands (L) provides a range of complexes of the type trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$, most of which isomerise on heating to their cis counterparts. While our work was in progress, Ernst et al. ${ }^{34}$ reported the displacement of hexa-2,4-diene or 2,3-dimethylbutadiene from their $\mathrm{Ru}(\mathrm{acac})_{2}$ complexes by PEt_{3} or $\mathrm{P}(\mathrm{OMe})_{3}$ to give mixtures of cis- and trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$. These authors suggested that the predominance of the trans isomer in the isolated product was due to its lower solubility and that this effect would be assisted by rapid cis to trans isomerisation in solution. However, ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy shows clearly that the trans isomer is the kinetic product of reaction of complex 1 with monodentate tertiary phosphines and phosphites and that isomerisation to the stable cis product is relatively slow at room temperature. Werner and co-workers ${ }^{38}$ have reported recently that zinc amalgam reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in hot aqueous THF in the presence of triisopropylstibine gives $c i s-\left[\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{SbPr}_{3}\right)_{2}\right]$, analogous to our SbPh_{3} complex.

The only other examples of isolated cis and trans isomers of $\left[\operatorname{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ to our knowledge are those containing acetonitrile and pyrazine. The cis isomers were obtained by zinc amalgam reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in aqueous ethanol in the presence of the ligands, ${ }^{39,40}$ the trans isomers by reaction of the ligands with trans- $\left[\mathrm{Ph}_{4} \mathrm{As}\right]\left[\mathrm{RuCl}_{2}(\mathrm{acac})_{2}\right]^{40}$ The complexes cis$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{CO}^{41}\right.$ or $\left.\mathrm{PPh}_{3}{ }^{42-44}\right]$ are well known. It has been claimed ${ }^{43,44}$ that solid cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ exists in interconvertible orange and green forms that are identical in solution, but we found no evidence for this behaviour in the
orange compound prepared by isomerisation of trans-[Ru$\left.(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. Clearly, the suggestion ${ }^{43}$ that one of the forms contains trans- PPh_{3} groups in the solid state must be dismissed on the basis of our results. Complexes of the type $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ containing various allylic sulfides, sulfoxides, amines, imines and phosphines have been mentioned in a paper dealing with double bond isomerisation catalysed by tris(β-diketonato)ruthenium(III) complexes but they were not fully characterised. ${ }^{45}$

Reaction with complex 1 also allows the formation of metastable trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\right]$ complexes containing potentially bidentate ditertiary phosphines $(\mathrm{L}-\mathrm{L})$. In $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})_{2}\right]$ the ligand is monodentate, whereas in oligomeric $\left[\mathrm{Ru}(\mathrm{acac})_{2}-\right.$ (dppe)] and $\left[\operatorname{Ru}(\mathrm{acac})_{2}(\mathrm{dppp})\right]$ the ligands are probably bridging. All three compounds are converted into the stable cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{~L}-\mathrm{L})\right]$ complexes on heating. Complexes of this type containing chiral ditertiary phosphines such as (S)-BINAP [BINAP $=2,2^{\prime}$-bis(diphenylphosphino)- $1,1^{\prime}$-binaphthyl] have been made previously from $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ and the ligand under hydrogen (70 bar) or from $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{cod})\right]$ and the ligand at $145^{\circ} \mathrm{C} .{ }^{46}$
The formation of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ from $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ $\left.\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}$] represents an unusual example of a well defined stereochemical course of ligand substitution at an octahedral metal centre. ${ }^{47}$ Detailed kinetics studies have not yet been carried out, but the isolation in two cases of monosubstitution products cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}^{\prime}\right]\left(\mathrm{L}^{\prime}=\mathrm{MeCN}\right.$ or $\left.\mathrm{SbPh}_{3}\right)$ supports the idea that the olefins are replaced stepwise, most likely by a dissociative process. In the case of the Group 15 donors and $\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}$ the second olefin must be replaced more rapidly than the first. The five-co-ordinate intermediate $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$ generated at this step is assumed to be square pyramidal; preferential attack by the entering ligand L at the vacant site will give trans$\left[\operatorname{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ (Scheme 2). The square pyramidal geometry for a

Scheme 2 Suggested pathway for formation of trans- and cis$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ from cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]$.
five-co-ordinate d^{6}-metal complex is expected on the basis of theoretical considerations ${ }^{48,49}$ and is observed in complexes such as $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{50}$ At higher temperatures a trigonal bipyramidal geometry for $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$ may become accessible, hence reversible dissociation of L from trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ gives finally the cis isomer. It is not yet known whether the formation of cis-[Ru(acac $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]$ in the first substitution step proceeds through a similar sequence via an undetected intermediate trans-[Ru(acac $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]$. This trans to cis isomerisation of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ occurs most readily for $\mathrm{L}=$ $\mathrm{PPh}_{3}, \mathrm{PMePh}_{2}, \mathrm{P}(\mathrm{OPh})_{3}, \mathrm{P}(\mathrm{OMe})_{3}, \mathrm{AsPh}_{3}$ and $\mathrm{Bu}^{\mathrm{N}} \mathrm{NC}$, presumably reflecting in part the trans-bond weakening influences of these ligands. ${ }^{51,52}$ In the case of $\mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}$ this process occurs even on heating the solid compound. The corresponding isomerisations for $\mathrm{L}=\mathrm{PMe}_{3}$ or $\mathrm{PMe}_{2} \mathrm{Ph}$ require higher temper-
atures and in these cases reversible one-ended dissociation of acac may play a role.

The lability of the ligands $\mathrm{NMe}_{3}, \mathrm{PPh}_{3}$ and AsPh_{3} in their trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ complexes is also evident from the ready displacement of L by CO to give either trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO}) \mathrm{L}\right]$ $\left(\mathrm{L}=\mathrm{NMe}_{3}\right.$ or $\left.\mathrm{PPh}_{3}\right)$ or $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)\right]$. The only reported examples of this type of monocarbonyl complex are the derivatives trans $-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})(\mathrm{ROH})\right](\mathrm{R}=\mathrm{Me}$, Et or ${ }^{\mathrm{i}} \mathrm{Pr}$), which have been made by γ radiolysis of alcoholic solutions of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ under $\mathrm{CO} .{ }^{53}$

The greater thermodynamic stability of the cis isomers presumably reflects the tendency of even the most weakly π acceptor ligands to avoid competition for the same d orbital on ruthenium(II) and, in agreement, only the bis(trimethylamine) complex trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right]$ fails to undergo isomerisation; steric repulsion between adjacent NMe_{3} groups may also destabilise the corresponding cis isomer. The compound trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right]$ is an unusual example of monodentate tertiary amine co-ordination to a later transition element, although low-valent metal carbonyl derivatives such as $\left[\mathrm{M}(\mathrm{CO})_{5^{-}}\right.$ $\left.\left(\mathrm{NMe}_{3}\right)\right](\mathrm{M}=\mathrm{Cr} \text {, Mo or } \mathrm{W})^{54}$ and $\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{NMe}_{3}\right)\right],{ }^{55}$ and compounds with early transition elements, such as $\left[\mathrm{MCl}_{3}\right.$ $\left(\mathrm{NMe}_{3}\right)_{2}$] $(\mathrm{M}=\mathrm{Ti}, \mathrm{V}$ or Cr$),{ }^{56}$ are well known. The surprising stability to air of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right]$ can be attributed to the relatively unhindered nature of the $\left[\mathrm{Ru}(\mathrm{acac})_{2}\right]$ acceptor and to the steric protection to oxidation at the metal centre by the methyl groups of the amine.

Conclusion

The cyclooctene complex $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right] \mathbf{1}$, which is easily accessible from $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$, provides a convenient entry into a wide range of trans- and cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ complexes. Since the acac ligands should also be readily removed by protonation, these compounds may also prove to be useful synthetic precursors in ruthenium chemistry.

Experimental

All operations were carried out under anaerobic conditions with use of standard Schlenk techniques. Cyclooctene and norbornadiene were filtered through a column of neutral, freshly degassed alumina to remove peroxides; solvents were freshly degassed by distillation under nitrogen before use. The following instruments were used: Varian XL-200 (${ }^{1} \mathrm{H}$ at $200 \mathrm{MHz},{ }^{31} \mathrm{P}$ NMR at 80.9 MHz$)$, Varian Gemini 300 BB or VXR $300\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at $75.4 \mathrm{MHz},{ }^{31} \mathrm{P}$ NMR at 121.4 MHz), Perkin-Elmer 683 or 1800 (FT) (IR spectra on solids as KBr discs or Nujol mulls between KBr windows, or on solutions in 0.1 mm KBr cells), VG Micromass 7070 or Fisons Instruments VG Autospec [electron-impact (EI) mass spectra at 70 eV $\left(\approx 1.1215 \times 10^{-17} \mathrm{~J}\right)$], and VG ZAB2-SEQ [fast-atom bombardment (FAB) mass spectra on samples prepared in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added to a matrix of tetraglyme (2,5,8,11,14-pentaoxapentadecane) or 3-nitrobenzyl alcohol]. Microanalyses were performed in-house. Samples for analysis were usually dried in vacuo at $60-80^{\circ} \mathrm{C}$ for 3 h to remove traces of solvent. In the case of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right]$ this procedure caused some decomposition and trans to cis isomerisation, so this sample was dried in vacuo at room temperature. Melting points were determined on a Kofler hot-stage. Elemental analyses and mass spectral data are listed in Table 6.

Liquid zinc amalgam $(2-3 \% \mathrm{Zn})^{57}$ and $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]^{30,58}$ were prepared by the appropriate literature procedures. Zinc dust was treated immediately before use with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, and washed successively with water, alcohol and diethyl ether.

Preparations

cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathbf{C}_{8} \mathbf{H}_{14}\right)_{2}\right]$ 1. The following procedure is typical. To a solution of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right](500 \mathrm{mg}, 1.26 \mathrm{mmol})$ in
freshly distilled THF ($100 \mathrm{~cm}^{3}$) containing cyclooctene $\left(15 \mathrm{~cm}^{3}\right)$ and water $\left(2 \mathrm{~cm}^{3}\right)$ was added liquid zinc amalgam $\left(50 \mathrm{~cm}^{3}\right)$ and the mixture heated under reflux with magnetic stirring in an argon atmosphere for 3 h . The initially dark solution turned orange within 30 min . The supernatant liquid was filtered through degassed Celite into a graduated Schlenk flask and the orange-red filtrate evaporated under reduced pressure to $c a .100$ cm^{3} to give a solution assumed to contain $0.0126 \mathrm{mmol} \mathrm{cm}^{-3}$ of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$.

To obtain the ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{1}$, solvents were removed under reduced pressure and the resulting yellowbrown oil was taken up in $\mathrm{C}_{6} \mathrm{D}_{6}$ containing a few drops of cyclooctene. If cyclooctene was not added the more complex spectrum described in the text was obtained. On one occasion yellow-brown crystals with a C,H microanalysis corresponding to $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ were obtained when the solution was evaporated to dryness and set aside at $0^{\circ} \mathrm{C}$. Found: C, 59.65 ; H, 8.24. $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Ru}$ requires C, 60.11; H, 8.09\%. EI-MS: m/z 399 $\left[\mathrm{Ru}_{2}(\mathrm{acac})_{2}\right]$.
[Ru(acac) $\left.\mathbf{2}_{\mathbf{2}}\left(\boldsymbol{\eta}^{4}-\mathbf{n b d}\right)\right]$. A mixture of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right](600 \mathrm{mg}, 1.5$ mmol), ethanol $\left(100 \mathrm{~cm}^{3}\right)$, water $\left(5 \mathrm{~cm}^{3}\right)$, norbornadiene (10 cm^{3}) and zinc amalgam ($50 \mathrm{~cm}^{3}$) was heated under reflux with magnetic stirring for 90 min . The solution turned brown then grey-green. It was siphoned off and evaporated to dryness under reduced pressure to give the crude product as a yellowgreen solid. This was purified by passage of a solution in chloroform through a neutral alumina column (activity III), eluting with $\mathrm{CHCl}_{3}-$ hexane. The product, $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{4}-\mathrm{nbd}\right)\right]$, crystallised as a yellow solid on concentration of the eluate. The yield was $300 \mathrm{mg}(51 \%)$. Found: C, 52.20; $\mathrm{H}, 5.84 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Ru}$ requires $\mathrm{C}, 52.17 ; \mathrm{H}, 5.62 \%$. The ${ }^{1} \mathrm{H}$ NMR spectrum agreed with that reported. ${ }^{14}$
[$\left.\mathbf{R u}(\mathbf{a c a c})_{\mathbf{2}}(\mathbf{p y})_{2}\right]$. A solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right] \mathbf{1}$ (2.5 mmol) in THF $\left(40 \mathrm{~cm}^{3}\right)$ was stirred with an excess of pyridine $\left(1.0 \mathrm{~cm}^{3}\right)$ at room temperature for 6 h . A red-brown solid that had deposited from the dark red solution was separated by centrifugation and washed with hexane. The yield of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{py})_{2}\right]$ was $650 \mathrm{mg}(57 \%)$.

The trans isomer ($450 \mathrm{mg}, 0.98 \mathrm{mmol}$) was heated under argon in refluxing xylene for 15 h to give, after filtration through Celite, a deep red solution. The ${ }^{1} \mathrm{H}$ NMR spectrum of the solid obtained after removal of solvent showed the presence of cis- and trans-[Ru(acac) $\left.)_{2}(\mathrm{py})_{2}\right]$. The dark red crystals obtained in the first fraction by crystallisation from THFhexane also contained a mixture of isomers. Chromatography of the supernatant on neutral alumina (activity III) gave a bright red band, which was evaporated to dryness. The sticky residue was washed with ether to give pure cis-[Ru(acac) $\left.)_{2}(\mathrm{py})_{2}\right]$ as a bright red solid, $\mathrm{mp} 188-190^{\circ} \mathrm{C}(200 \mathrm{mg}, 44 \%)$.
[Ru(acac) $\left.\mathbf{2}_{\mathbf{2}}(\mathbf{b i p y})\right]$. A solution of complex $\mathbf{1}(1.0 \mathrm{mmol})$ in THF ($10 \mathrm{~cm}^{3}$) was stirred overnight with a solution of $2,2^{\prime}$ bipyridyl (bipy) ($190 \mathrm{mg}, 1.2 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$. The precipitated solid was separated from the dark green suspension by centrifugation and washed with hexane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The yield of crude cis-[Ru(acac) ${ }_{2}$ (bipy)] was $339 \mathrm{mg}(75 \%)$. The compound was purified by filtration of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution through a column of neutral alumina (Activity III), which removed some unidentified purple material. The green filtrate was evaporated to small volume and the product precipitated by addition of hexane.
$\left[\mathbf{R u}(\mathbf{a c a c})_{2}\left(\mathbf{C N B u}^{\mathrm{t}}\right)_{2}\right]$. A solution of complex $\mathbf{1}(1.25 \mathrm{mmol})$ in THF ($30 \mathrm{~cm}^{3}$) was treated with tert-butyl isocyanide $\left(0.5 \mathrm{~cm}^{3}\right.$, 4.4 mmol) and the mixture stirred for 6 h . Some orange trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$ precipitated. The solution was evaporated to dryness under reduced pressure and the residue dissolved in

Table 6 Elemental analyses and mass spectra of $\left[R u(a c a c)_{2} L\left(L^{\prime}\right)\right]$ complexes

L, L^{\prime}	Geometry	Analysis(\%) ${ }^{a}$			$m / z^{\text {b }}$
		C	H	Other	
2py	trans	52.55(52.5)	5.5(5.25)	6.0(6.1)(N)	458
	cis	52.7(52.5)	5.3(5.25)	5.9(6.1)(N)	458
$2 \mathrm{Bu}^{\text {t }} \mathrm{NC}$	trans	51.5(51.6)	7.2(6.9)	$5.6(6.0)(\mathrm{N})$	466
	cis	51.7(51.6)	7.0(6.9)	5.9(6.0)(N)	466
$\mathrm{C}_{8} \mathrm{H}_{14}, \mathrm{MeCN}$	cis	53.0(53.3)	7.0(6.8)	$2.9(3.1)(\mathrm{N})$	$451{ }^{\text {c }}$
$2 \mathrm{NMe}_{3}$	trans	46.15(46.0)	7.7(7.7)	6.3(6.7)(N)	418
bipy	cis	53.6(52.7)	4.5(4.8)	6.15(6.15)(N)	456
$2 \mathrm{PPh}_{3}$	trans	67.7(67.1)	5.6(5.3)	$7.4(7.5)(\mathrm{P})$	824
	cis	67.0(67.1)	5.3(5.3)	7.65(7.5)(P)	824
$2 \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}$	trans	69.0(68.7)	6.5(6.2)	6.5(6.8)(P)	908
	cis	68.5(68.7)	6.1(6.2)	6.5(6.8)(P)	908
$2 \mathrm{PMePh}_{2}$	trans	61.0(61.8)	6.0(5.7)	8.7(8.9)(P)	699
	cis	61.8(61.8)	5.9(5.7)	8.9(8.9)(P)	700
$2 \mathrm{PMe}_{2} \mathrm{Ph}$	trans	54.0(54.3)	6.3(6.3)	10.5(10.8)(P)	576
	cis	54.1(54.3)	6.3(6.3)	10.9(10.8)(P)	576
$2 \mathrm{PMe}_{3}$	trans	41.7(42.6)	7.4(7.1)	14.8(13.7)(P)	$376{ }^{\text {d }}$
	cis	44.4(42.6)	7.3(7.1)	14.0(13.7)(P)	452
$2 \mathrm{PEt}_{3}$	trans	49.0(49.35)	8.3(8.2)	11.6(11.6)(P)	536
	cis	49.6(49.35)	7.9(8.2)	11.2(11.6)(P)	536
$2 \mathrm{P}(\mathrm{OMe})_{3}$	trans	35.2(35.1)	5.8(5.85)	11.0(11.3)(P)	548
	cis	35.3(35.1)	6.2(5.85)	12.1(11.3)(P)	548
$2 \mathrm{P}(\mathrm{OPh})_{3}$	trans	59.9(60.1)	4.9(4.8)	6.7(6.7)(P)	920
	cis	60.3(60.1)	4.7(4.8)	6.6(6.7)(P)	920
$2 \mathrm{AsPh}_{3}$	trans	60.6(60.6)	4.6(4.8)		912
	cis	60.3(60.6)	5.2(4.8)		912
$\mathrm{C}_{8} \mathrm{H}_{14}, \mathrm{SbPh}_{3}$	cis	56.9(56.7)	5.8(5.6)		652^{e}
$2 \mathrm{SbPh}_{3}$	cis	54.6(55.0)	4.4(4.4)		1006
2 dppm	trans	65.9(65.4)	5.45(5.35)	10.6(11.2)(P)	$968{ }^{\text {f }}$
$0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$				$3.8(3.2)(\mathrm{Cl})$	
dppm	cis	61.6(61.5)	5.3(5.3)	$9.1(9.1)(\mathrm{P})$	684
dppe	trans	61.6(62.0)	5.6(5.45)	8.8(8.9)(P)	698
	cis	60.9(62.0)	5.6(5.45)	8.95(8.9)(Cl)	698
dppp	cis	62.4(62.4)	5.7(5.6)	8.8(8.7)(P)	712
$\mathrm{CO}, \mathrm{NMe}_{3}$	trans	44.0(43.5)	6.45(5.95)	$3.75(3.6)(\mathrm{N})$	$387{ }^{\text {c }}$
$\mathrm{CO}, \mathrm{PPh}_{3}$	trans	58.8(59.0)	5.2(4.9)	5.3(5.25)(P)	590
	cis	59.4(59.0)	4.9(4.9)	5.7(5.25)(P)	589
$\mathrm{CO}, \mathrm{AsPh}_{3}$	cis	55.35(55.0)	4.8(4.85)		634

${ }^{a}$ Calculated values given in parentheses. ${ }^{b}$ Molecular ion peaks in electron-impact mass spectra, except where stated. ${ }^{c}$ FAB-mass spectrum. ${ }^{d}\left[M-\mathrm{PMe}_{3}\right]^{+} .{ }^{e}\left[M-\mathrm{C}_{8} \mathrm{H}_{14}\right]^{+} . .^{f}[M-\mathrm{acac}]^{+}$.
warm toluene. Addition of hexane at $0^{\circ} \mathrm{C}$ gave deep orange crystals of trans-[Ru(acac $\left.)_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$, mp $169-174{ }^{\circ} \mathrm{C}(385 \mathrm{mg}$, 66\%).

A solution of the trans isomer ($400 \mathrm{mg}, 0.86 \mathrm{mmol}$) in toluene ($30 \mathrm{~cm}^{3}$) was heated under reflux for 3 h . The red-brown gum remaining after removal of solvent under reduced pressure solidified when hexane was added; the mixture was set aside at $0{ }^{\circ} \mathrm{C}$. The yield of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right], \mathrm{mp} 134-137{ }^{\circ} \mathrm{C}$, was $250 \mathrm{mg}(62 \%)$. Recrystallisation from toluene-hexane gave the complex as dark crystals, mp 137-141 ${ }^{\circ} \mathrm{C}$.
[Ru(acac) $\left.\left.\mathbf{2}_{\mathbf{2}} \boldsymbol{\eta}^{2}-\mathbf{C}_{8} \mathbf{H}_{14}\right)(\mathbf{N C M e})\right]$. A solution of complex 1 ($c a$. $4 \mathrm{mmol})$ in THF ($40 \mathrm{~cm}^{3}$) was stirred with acetonitrile $\left(0.5 \mathrm{~cm}^{3}\right.$, 9.6 mmol) at room temperature overnight and the mixture evaporated almost to dryness. The residue was dissolved in THF ($c a .10 \mathrm{~cm}^{3}$) and the solution filtered through an icecooled column of degassed Celite, eluting with THF-hexane. Evaporation of the yellow-brown filtrate to dryness gave a light brown powder, which was recrystallised from toluene-hexane containing a few drops of cyclooctene at $0^{\circ} \mathrm{C}$. The rust-brown microcrystals were separated by filtration and washed with cold hexane to give $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)(\mathrm{NCMe})\right]$, mp 128 $145^{\circ} \mathrm{C}$. The yield was $1.1 \mathrm{~g}(62 \%)$.
cis-[Ru(acac) $\left.\mathbf{2}_{2}(\mathbf{N C M e})_{2}\right]$. This was made following the procedure of Kobayashi et al. ${ }^{39}$ A suspension of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right](4.5 \mathrm{~g}$, $1.13 \mathrm{mmol})$ in a mixture of ethanol $\left(300 \mathrm{~cm}^{3}\right)$, acetonitrile (20 $\left.\mathrm{cm}^{3}\right)$ and water $\left(20 \mathrm{~cm}^{3}\right)$ was stirred overnight with an excess of zinc amalgam $\left(c a .70 \mathrm{~cm}^{3}\right)$. The orange suspension was filtered
through degassed Celite and the dark orange filtrate evaporated to dryness. The residue was extracted with dichloromethaneether and again filtered through degassed Celite, an initial green-black fraction being discarded. The dark orange fraction was evaporated to dryness to give cis-[Ru(acac) $\left.)_{2}(\mathrm{NCMe})_{2}\right]$ as a brown powder ($2.0 \mathrm{~g}, 46 \%$).
$\left[\mathbf{R u}(\mathbf{a c a c})_{2}\left(\mathbf{N M e}_{3}\right)_{2}\right]$. (i) A solution of complex $\mathbf{1}$ (ca. 1 mmol$)$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was treated with an excess of aqueous trimethylamine and the mixture stirred in a closed vessel at room temperature for 40 h . The rust-brown mixture was evaporated to dryness to give an orange solid that turned green on addition of THF-hexane. The solution was filtered through an icecooled column of Celite, leaving a brown residue. The filtrate was evaporated to dryness and the residue dissolved in toluenehexane ($c a .10 \mathrm{~cm}^{3}$). The green solution, kept at $-78^{\circ} \mathrm{C}$ for 4 d , deposited a green-brown solid, which was washed with ice-cold hexane. The yield of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right]$ was $c a .50 \%$. The compound could be sublimed as a brown oil at $60^{\circ} \mathrm{C} / 10^{-4}$ mmHg with some loss.
(ii) A solution of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right](600 \mathrm{mg}, 1.5 \mathrm{mmol})$ in THF $\left(80 \mathrm{~cm}^{3}\right)$ was heated with magnetic stirring at $110^{\circ} \mathrm{C}$ for 4 h in a closed pressure vessel with zinc amalgam ($1.7 \%, 50 \mathrm{~cm}^{3}$) and trimethylamine ($3 \mathrm{~cm}^{3}$ of 17.8% aqueous solution, 9 mmol). The mixture was allowed to cool to room temperature and the organic phase filtered through Celite. The brown filtrate was evaporated to dryness to give a yellow-brown solid $(800 \mathrm{mg})$, which was dissolved in THF ($5 \mathrm{~cm}^{3}$). Addition of hexane ($c a .10$ cm^{3}) and cooling to $-78{ }^{\circ} \mathrm{C}$ gave trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right]$ as a
green-black solid, which was washed with cold hexane and dried in vacuo. The yield was $370 \mathrm{mg}(59 \%)$.
$\left[\mathbf{R u}(\mathbf{a c a c})_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right]$. A solution of complex $\mathbf{1}(2.5 \mathrm{mmol})$ in THF ($40 \mathrm{~cm}^{3}$) was added to a solution of triphenylphosphine $(1.30 \mathrm{~g}, 4.96 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 24 h at room temperature. A red-brown solid precipitated and more product was obtained by addition of hexane $\left(20 \mathrm{~cm}^{3}\right)$. The solid was separated by filtration and washed with hexane to give trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](1.4 \mathrm{~g}, 68 \%)$. The compound can be recrystallised from a large volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane to which a small amount of PPh_{3} has been added

A solution of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.50 \mathrm{~g}, 0.61 \mathrm{mmol})$ in benzene ($20 \mathrm{~cm}^{3}$) was heated overnight under reflux in an argon atmosphere for 12 h . The pale yellow-brown solution was evaporated to dryness under reduced pressure and the residue recrystallised from ether-hexane to give cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ as bright yellow microcrystals, $\mathrm{mp} 194-198{ }^{\circ} \mathrm{C}(400 \mathrm{mg}, 80 \%)$. The same compound was obtained by heating trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ under reflux in toluene for 4 h .

Similarly prepared were trans-[Ru(acac) $\left.)_{2}\left\{\mathrm{P}\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}\right\}_{2}\right]$ (red-brown solid, mp $177-180^{\circ} \mathrm{C}, 69 \%$), cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}{ }^{-}\right.$ $\left.\left\{\mathrm{P}\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}\right\}_{2}\right]$ (yellow-brown solid, mp $198-205^{\circ} \mathrm{C}, 70 \%$ after recrystallisation from THF-hexane), trans-[Ru(acac) $)_{2}$ $\left.\left(\mathrm{PMePh}_{2}\right)_{2}\right]($ red-brown solid, $80 \%)$, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ (yellow-brown solid, $\mathrm{mp} 185-188^{\circ} \mathrm{C}, 70 \%$), trans-[Ru(acac) $)_{2}$ $\left(\mathrm{AsPh}_{3}\right)_{2}$] (orange-brown solid, mp $165-168^{\circ} \mathrm{C}, 66 \%$) and cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ (yellow-brown solid, mp 195-198 ${ }^{\circ} \mathrm{C}, 75^{\circ} \%$).
cis-[Ru(acac) $\left.\mathbf{2}_{\mathbf{2}}\left(\boldsymbol{\eta}^{2}-\mathbf{C}_{8} \mathbf{H}_{14}\right)\left(\mathbf{S b P h}_{3}\right)\right]$. A solution of complex $\mathbf{1}$ (1.5 mmol) in THF $\left(15 \mathrm{~cm}^{3}\right)$ was treated with a solution of $\mathrm{SbPh}_{3}(550 \mathrm{mg}, 1.55 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ and the mixture stirred at room temperature overnight. A small sample of the solution was evaporated to dryness and the sticky brown residue dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$; the ${ }^{1} \mathrm{H}$ NMR spectrum showed that the main species present was $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$. The mixture was evaporated to dryness, the residue dissolved in THF, and the solution filtered through Celite. The solvent was removed from the filtrate to give a yellow-green foam, which was taken up in hexane to which a drop of cyclooctene had been added. On cooling in solid CO_{2} a small amount of yellow-green solid separated, which was removed by filtration. Evaporation of the filtrate to dryness gave cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\right.$ -$\left.\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ as a yellow-brown solid, mp $123-130^{\circ} \mathrm{C}$ ($200 \mathrm{mg}, 17 \%$).
$c i s-\left[\mathbf{R u}(\mathbf{a c a c})_{2}\left(\mathbf{S b P h}_{3}\right)_{2}\right]$. A solution of complex $\mathbf{1}(1.5 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was combined with a solution of $\mathrm{SbPh}_{3}(1.1 \mathrm{~g}$, $3.1 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ and the mixture stirred at room temperature overnight. At this stage the ${ }^{1} \mathrm{H}$ NMR spectrum of a test sample showed the presence of free cyclooctene and cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$; there was no further reaction after 24 h . A grey precipitate was removed by centrifugation, the liquid evaporated to dryness, and the red-brown residue heated under reflux in toluene ($20 \mathrm{~cm}^{3}$) for 5 h . Solvent was removed under reduced pressure and the solid residue recrystallised from THF-hexane to give cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right](800$ $\mathrm{mg}, 53 \%$) as an orange powder, $\mathrm{mp} 190-192^{\circ} \mathrm{C}$.
$\left[\mathbf{R u}(\mathbf{a c a c})_{2}\left(\mathbf{P M e}_{2} \mathbf{P h}\right)_{2}\right]$. A solution containing complex $\mathbf{1}$ (1.07 mmol) in either 1,4-dioxane or THF $\left(12 \mathrm{~cm}^{3}\right)$ was added to a solution of $\mathrm{PMe}_{2} \mathrm{Ph}(306 \mathrm{mg}, 2.2 \mathrm{mmol})$ in the same solvent and the mixture stirred at room temperature overnight. The solution was evaporated to dryness under reduced pressure and the residue taken up in THF ($2 \mathrm{~cm}^{3}$). Addition of hexane (3 cm^{3}) gave impure trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ as a red-brown solid, which was filtered off and washed with ice-cold hexane. The compound was purified (though with considerable loss) by filtering its solution in THF through Celite. Addition of ether gave the trans isomer as a brown solid, mp $175-178^{\circ} \mathrm{C}$,
which was washed with ether at $-78^{\circ} \mathrm{C}$. The yield was 100 mg (16\%).

A solution of crude trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \quad$ (ca. 1.0 mmol) in xylene ($10 \mathrm{~cm}^{3}$) was heated under reflux for 3 h and then evaporated to dryness under reduced pressure. The residue was taken up in hexane and the solution filtered through alumina (activity III). The solid remaining after removal of solvent showed a broad $v(\mathrm{CO})$ band at $1938 \mathrm{~cm}^{-1}$. Recrystallisation from ether-pentane at $-78{ }^{\circ} \mathrm{C}$ gave cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ as a bright, yellow-brown solid, which still showed a weak $v(\mathrm{CO})$ absorption in its IR spectrum at $1946 \mathrm{~cm}^{-1}$. More product was obtained by again filtering the supernatant liquid through alumina and eluting with THF-hexane. The solid obtained by evaporating the yellow fraction to dryness was recrystallised from ether-pentane at $-78^{\circ} \mathrm{C}$. The total yield of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}{ }^{-}\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right], \mathrm{mp} 107-112{ }^{\circ} \mathrm{C}$, was ca. 36%.
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$. To a solution of complex $\mathbf{1}(1.0 \mathrm{mmol})$ in THF (10 ml) was added via syringe trimethylphosphine $\left(0.3 \mathrm{~cm}^{3}, 2.9 \mathrm{mmol}\right)$. The mixture was stirred for 24 h and evaporated to dryness under reduced pressure to give a gummy, red-brown residue. At this stage monitoring by NMR $\left({ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\right)$ spectroscopy showed the presence of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ as the main product ($\delta_{\mathrm{P}} 9.4$), together with small amounts of $\mathrm{Me}_{3} \mathrm{PO}$ and $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$. The residue was dissolved in a small volume of THF and the solution filtered through degassed silica gel 60 , eluting with THF-hexane. Some red material remained on the column. Evaporation of the filtrate to dryness gave crude trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ as a red-brown solid in ca. 60% yield. This gave red-brown crystals, mp $170-175^{\circ} \mathrm{C}$ ($53 \mathrm{mg}, 11 \%$), from THF-hexane.

A sample of the crude trans isomer (ca. $900 \mathrm{mg}, 2.5 \mathrm{mmol}$) was heated under reflux in mesitylene $\left(8 \mathrm{~cm}^{3}\right)$ for 3 h to give a red-brown solution, which gave an oily residue after removal of solvent. The ${ }^{31} \mathrm{P}$ NMR spectrum showed one peak at $\delta 31.7$ due to the $c i s$ isomer, together with a small peak at δ 27.2. Some, though not all, of the species responsible for the latter could be removed by filtering a THF-hexane solution several times through alumina (Grade III), although this procedure also caused some decomposition on the column. Evaporation to dryness gave cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ as a red-brown gum, which over a period of days turned into a yellow-brown solid, mp 58$64^{\circ} \mathrm{C}$. The yield was $c a .50 \%$. The IR spectrum showed an impurity $v(\mathrm{CO})$ band at $1940(\mathrm{KBr}), 1946 \mathrm{~cm}^{-1}$ (cyclohexane).
$\left[\mathrm{Ru}(\mathbf{a c a c})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$. To a solution of complex 1 (ca. 0.75 mmol) in THF ($5 \mathrm{~cm}^{3}$) was added via syringe triethylphosphine ($0.25 \mathrm{~cm}^{3}, 1.7 \mathrm{mmol}$). Some rust-brown solid precipitated almost immediately. The mixture was stirred for 12 h and hexane added to precipitate the product, which was separated by filtration. More solid was obtained by adding hexane to the filtrate and cooling in a solid CO_{2} bath. The total yield of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ was $310 \mathrm{mg}(77 \%)$.
A sample of the trans isomer ($240 \mathrm{mg}, 0.45 \mathrm{mmol}$) was heated under reflux in xylene ($20 \mathrm{~cm}^{3}$) for 4 h (there was no change in refluxing benzene). The ${ }^{31} \mathrm{P}$ NMR spectrum showed a peak at $\delta 46.3$ due to the cis isomer together with a small peak at $\delta 48.3$ due to $\mathrm{Et}_{3} \mathrm{PO}$. The solvent was removed under reduced pressure and the residue taken up in hexane. The solution was filtered through an ice-cooled column of neutral alumina (grade III) and the yellow band that eluted with THF-hexane evaporated to dryness. The yellow gummy residue solidified after several days. The yield of cis-[Ru(acac $\left.)_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ was $150 \mathrm{mg}(62 \%)$.
$\left[\mathbf{R u}(\mathbf{a c a c})_{2}\left\{\mathbf{P}(\mathbf{O M e})_{3}\right\}_{2}\right]$. A solution of complex $\mathbf{1}(2.5 \mathrm{mmol})$ in THF $\left(40 \mathrm{~cm}^{3}\right)$ was stirred with trimethyl phosphite $\left(0.7 \mathrm{~cm}^{3}\right.$, 6.0 mmol) in THF ($20 \mathrm{~cm}^{3}$) overnight. The mixture was evaporated to about half its volume and filtered through degassed Celite to remove a small amount of insoluble matter. Evaporation to $c a .10 \mathrm{~cm}^{3}$ volume and addition of hexane $\left(10 \mathrm{~cm}^{3}\right)$
gave small orange crystals of trans-[Ru(acac) $\left.)_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right]$, mp $142-146^{\circ} \mathrm{C}$, which were separated by filtration and washed with hexane. The yield was $1.3 \mathrm{~g}(95 \%)$.

A sample of the trans isomer ($550 \mathrm{~g}, 1 \mathrm{mmol}$) was heated under reflux in toluene ($20 \mathrm{~cm}^{3}$) for 2 h , changing from orange to yellow-brown. Solvent was removed in vacuo and the residue dissolved in hexane. The solution was filtered through degassed Celite and the product eluted with THF-hexane; some unidentified material remained on the column. The filtrate was evaporated to dryness and the residue dissolved in a small volume of hexane. Pale yellow needles of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}-\right.$ $\left.\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}\right](100 \mathrm{mg}, 18 \%)$ crystallised at $-78^{\circ} \mathrm{C}$. Although analytically and spectroscopically pure, the compound appeared to melt over a range, $85-104^{\circ} \mathrm{C}$. A second crop of less pure material was obtained by cooling the supernatant liquid in a solid CO_{2} bath.
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left\{\mathbf{P}(\mathbf{O P h})_{3}\right\}_{2}\right]$. A solution containing complex $\mathbf{1}$ (2.3 mmol) in THF ($40 \mathrm{~cm}^{3}$) was stirred with freshly distilled triphenyl phosphite ($1.2 \mathrm{~cm}^{3}, 4.5 \mathrm{mmol}$) at room temperature for 3 d . The volume was reduced to $c a .10 \mathrm{~cm}^{3}$ and hexane added. The resulting rust-brown precipitate was separated by centrifugation and washed with hexane ($3 \times 20 \mathrm{~cm}^{3}$) to give trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right](1.25 \mathrm{~g}, 59 \%)$ as a rust-brown powder, $\mathrm{mp} 118-120^{\circ} \mathrm{C}$. More solid that precipitated from the filtrate was shown by NMR (${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$) spectroscopy to be mainly the cis isomer containing ca. 20% trans isomer. Recrystallisation from hot toluene-hexane gave pale grey-green crystals of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}\right](300 \mathrm{mg}, 14 \%)$. When a sample of the trans isomer was heated in vacuo at $80^{\circ} \mathrm{C}$ for 4 h some isomerisation to the cis compound occurred, accompanied by decomposition.
$\left[\mathbf{R u}(\mathbf{a c a c})_{2}(\mathbf{d p p m})_{2}\right]$. A solution of dppm ($384 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added to an ice-cooled solution of complex $1(0.5 \mathrm{mmol})$ in THF $\left(3.5 \mathrm{~cm}^{3}\right)$ to give an immediate rustbrown precipitate. The mixture was stirred for 4 h ; the solid was separated by centrifugation and washed with hexane $(3 \times 20$ cm^{3}) to give trans-[Ru(acac) $\left.)_{2}(\mathrm{dppm})_{2}\right](520 \mathrm{mg}, 97 \%)$. It could be recrystallised from THF-hexane or toluene-hexane, though some cis $-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})\right]$ was recovered from the filtrate. After recrystallisation the trans compound melted at 172 $176^{\circ} \mathrm{C}$.
[Ru(acac) $\mathbf{2}_{2}$ (dppm)]. A solution of dppm ($384 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$) was added to a solution of complex $\mathbf{1}$ (1.0 $\mathrm{mmol})$ in THF $\left(7 \mathrm{~cm}^{3}\right)$. Evaporation under reduced pressure to $c a$. half-volume and addition of hexane gave a yellow precipitate of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})\right](580 \mathrm{mg}, 85 \%), \mathrm{mp} 231-235^{\circ} \mathrm{C}$. The compound could be recrystallised from toluene-hexane and sublimed at ca. $200^{\circ} \mathrm{C} / 10^{-4} \mathrm{mmHg}$ on to a cold-finger at $-15^{\circ} \mathrm{C}$.
[Ru(acac) $\mathbf{2}_{\mathbf{2}}$ (dppe)]. Addition of a solution of dppe $(850 \mathrm{mg}$, $2.13 \mathrm{mmol})$ in THF ($20 \mathrm{~cm}^{3}$) to a solution of complex 1 (2.0 mmol) in THF ($50 \mathrm{~cm}^{3}$) at room temperature gave immediately a yellow-brown suspension, which did not change after heating under reflux for 3 h . Solvent was removed under reduced pressure. The resulting brown solid was washed with THF (3×10 $\left.\mathrm{cm}^{3}\right)$ and dried in vacuo. The yield of trans- $\left\{\left\{\mathrm{Ru}(\mathrm{acac})_{2}-\right.\right.$ (dppe) $\}_{n}$], mp $210^{\circ} \mathrm{C}$, was quantitative. The compound is insoluble in common organic solvents. The same product was obtained by heating cis-[Ru(acac) $\left.)_{2}(\mathrm{NCMe})_{2}\right](1.14 \mathrm{~g}, 3.0 \mathrm{mmol})$ with dppe ($1.2 \mathrm{~g}, 3.0 \mathrm{mmol}$) in benzene overnight. The yield of precipitated yellow-brown powder was $950 \mathrm{mg}(45 \%)$; evaporation of the filtrate to dryness gave more of the same brown solid.

A sample of trans $-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppe})\right\}_{n}\right](1.14 \mathrm{~g}, 1.64 \mathrm{mmol})$ was heated overnight under reflux in a mixture of xylene (50 cm^{3}) and di- n-butyl ether $\left(10 \mathrm{~cm}^{3}\right)$. Suspended solid was separ-
ated from the orange-brown solution by filtration and identified as unchanged starting material by its mp and IR spectrum. The filtrate was evaporated to dryness under reduced pressure and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ether ($10 \mathrm{~cm}^{3}$). The solution was filtered through silica gel 60 to remove some black solid. Addition of hexane gave cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppe})\right]$ as a bright yellow powder ($550 \mathrm{mg}, 58 \%$), mp $188-194^{\circ} \mathrm{C}$.
$\left[\mathbf{R u}(\mathbf{a c a c})_{2}(\mathbf{d p p p})\right]$. A solution of complex $\mathbf{1}(1.25 \mathrm{mmol})$ in THF ($25 \mathrm{~cm}^{3}$) was stirred overnight with dppp (515 mg , 1.25 mmol) dissolved in THF $\left(40 \mathrm{~cm}^{3}\right)$. In contrast with the behaviour of dppe there was no colour change or precipitate. On heating under reflux overnight a light orange solution was formed, which gave a gummy solid after removal of solvent. The solution in THF ($10 \mathrm{~cm}^{3}$) was filtered through a silica gel 60 column made up in hexane and an orange band eluted with ether. Solvent was evaporated and the residue recrystallised from ether-hexane to give $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppe})\right]$ as a bright yellow powder, $\mathrm{mp} 208-211^{\circ} \mathrm{C}$. The yield was $400 \mathrm{mg}(45 \%)$.
$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathbf{C O})\left(\mathrm{NMe}_{3}\right)\right]$. A solution of trans-[Ru(acac) $\mathbf{2}^{-}$ $\left.\left(\mathrm{NMe}_{3}\right)_{2}\right](100 \mathrm{mg}, 0.24 \mathrm{mmol})$ in hexane $\left(14 \mathrm{~cm}^{3}\right)$ was stirred at room temperature under CO (2 bar) in a small pressure vessel for 2 d . The IR spectrum of the resulting brown solution showed a strong $v(\mathrm{CO})$ band due to trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\right.$ $\left(\mathrm{NMe}_{3}\right)$] at $1953 \mathrm{~cm}^{-1}$, together with weak peaks due to unidentified products at 1935,1908 and $1670 \mathrm{~cm}^{-1}$. The solution was evaporated to dryness under reduced pressure and the residue recrystallised from a small volume of THF-hexane at $-78{ }^{\circ} \mathrm{C}$ to give trans-[Ru(acac) $\left.)_{2}(\mathrm{CO})\left(\mathrm{NMe}_{3}\right)\right]$ as a dark brown solid that smelt strongly of the amine. The yield was $c a .60 \%$. The $\mathrm{C} \equiv \mathrm{O}$ stretching frequency $\left(\mathrm{cm}^{-1}\right)$ in the IR spectrum appeared at 1920vs (KBr), 1953vs $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$, 1942vs ($\mathrm{Et}_{2} \mathrm{O}$), and 1938vs (THF). Other bands (KBr) were as follows: 3000 m , $2970 \mathrm{~m}, 2900 \mathrm{~ms}, 2850 \mathrm{~m}, 2790 \mathrm{w}, 1550 \mathrm{vs}, 1515 \mathrm{vs}, 1480 \mathrm{~m}, 1450-$ 1425 (br), $1410 \mathrm{~m}, 1380 \mathrm{vs}$ and $1360 \mathrm{~m} \mathrm{~cm}^{-1}$.
$\left[\operatorname{Ru}(\text { acac })_{2}(\mathbf{C O})\left(\mathbf{P P h}_{3}\right)\right]$. Carbon monoxide was bubbled through an ice-cooled suspension of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $(520 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF ($20 \mathrm{~cm}^{3}$) for 3 h . After ca. 2 h , a bright yellow, almost clear solution had formed. The volume was reduced to $c a .5 \mathrm{~cm}^{3}$ under reduced pressure and hexane $\left(5 \mathrm{~cm}^{3}\right)$ was added to the warm solution. On cooling, trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ precipitated as yellow microcrystals, $\mathrm{mp} 135-138^{\circ} \mathrm{C}(230 \mathrm{mg}, 62 \%)$. Bands $\left(\mathrm{cm}^{-1}\right)$ due to $v(\mathrm{CO})$ appeared at 1940vs, 1905m (KBr), 1966vs, 1944w, 1935m $\left(\mathrm{C}_{6} \mathrm{H}_{12}, 1 \mathrm{~mm}\right.$ path length), $1959 \mathrm{vs}, 1929 \mathrm{~ms}$ (toluene, 0.1 mm path length), 1935vs (THF, 0.1 mm path length) and 1956vs (br) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.1 \mathrm{~mm}\right.$ path length).
For the preparation of trans- $\left.\left[\mathrm{Ru}(\mathrm{acac})_{2}{ }^{(13} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right)\right]$ a suspension of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](687 \mathrm{mg}, 0.83 \mathrm{mmol})$ in THF $\left(6 \mathrm{~cm}^{3}\right)$ was treated with ${ }^{13} \mathrm{CO}(200 \mathrm{kPa})$ in a small pressure vessel. After 2 h the suspension had cleared and the IR spectrum, measured in toluene or cyclohexane, showed bands at 1912 vs and $1865 \mathrm{~m} \mathrm{~cm}^{-1}$. Addition of hexane precipitated a brown solid which still contained starting material. The solid was redissolved in THF and the solution stirred again under ${ }^{13} \mathrm{CO}(100 \mathrm{kPa})$ for 2 d . The isolated solid, $\left[\mathrm{Ru}(\mathrm{acac})_{2}{ }^{-}\right.$ $\left.\left({ }^{13} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right)\right]$, still contained starting material, but was suitable for spectroscopic studies.

A suspension of trans-[Ru(acac) $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right](280 \mathrm{mg}, 0.47$ $\mathrm{mmol})$ in toluene ($6 \mathrm{~cm}^{3}$) was heated under reflux for 3 h in an atmosphere of CO to give a bright yellow solution. Evaporation to a few cm^{3} volume and addition of hexane gave cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right](147 \mathrm{mg}, 52 \%)$ as yellow-brown microcrystals, mp $164-168{ }^{\circ} \mathrm{C}$. The ${ }^{13} \mathrm{CO}$-labelled material was formed similarly by heating trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left({ }^{13} \mathrm{CO}\right)\left(\mathrm{PPh}_{3}\right)\right]$ in toluene under argon. The product was contaminated with orange cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, as shown by ${ }^{31} \mathrm{P}$ NMR spectroscopy.

Table 7 Crystal and structure refinement data for trans-[Ru(acac $\left.)_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right]$, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CNBu}^{\mathrm{t}}\right)_{2}\right] \cdot\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$, trans-[Ru(acac)$\left.)_{2}(\mathrm{PMePh})_{2}\right]$, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ and trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{1}-\mathrm{dppm}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

	$\begin{aligned} & \operatorname{trans}-\left[\mathrm{Ru}(\mathrm{acac})_{2}-\right. \\ & \left.(\mathrm{CNBu})_{2}\right] \end{aligned}$	$\begin{aligned} & c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}-\right. \\ & \left.(\mathrm{CNBu})_{2}\right] \cdot \\ & {\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]} \end{aligned}$	$\begin{aligned} & \operatorname{trans}-\left[\mathrm{Ru}(\mathrm{acac})_{2}-\right. \\ & \left.\left(\mathrm{PMePh}_{2}\right)_{2}\right] \end{aligned}$	$\begin{aligned} & c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}-\right. \\ & \left.\left(\mathrm{PMePh}_{2}\right)_{2}\right] \end{aligned}$	$\begin{aligned} & \operatorname{trans}-\left[\mathrm{Ru}(\mathrm{acac})_{2}-\right. \\ & \left.\left(\eta^{1}-\mathrm{dppm}\right)_{2}\right] \end{aligned}$
Chemical formula	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Ru}$	$\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Ru}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$	$\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$	$\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Ru} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
M	465.56	$465.56+398.40$	699.73	699.73	$1068.08+169.87$
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	$P \overline{1}$ (no. 2)	$P 2_{1} / \mathrm{c}$ (no. 14)	C2/c (no. 15)	$C 2 / c$ (no. 15)	$P \overline{1}$ (no. 2)
alÅ	8.875(1)	16.233(4)	40.162(3)	12.270(2)	10.571(3)
b/Å	9.099(1)	17.091(5)	9.466(4)	15.443(4)	13.108(4)
clÅ	16.081(1)	15.618(3)	19.354(3)	17.748(3)	13.278(4)
$a /{ }^{\circ}$	94.27(1)				61.84(2)
$\beta 1{ }^{\circ}$	95.89(1)	109.04(1)	112.937(7)	90.46(1)	69.52(2)
$\gamma /{ }^{\circ}$	113.85(1)				85.32(3)
U / \AA^{3}	1171.7(2)	4096(2)	6776(2)	3362(1)	1511.8(8)
Z	2	4	8	4	1
T/K	299(1)	295(1)	296(1)	296(1)	296(1)
μ / cm^{-1}	57.3	7.72	5.94	5.98	5.87
X-Radiation (graphite monochromated)	$\mathrm{Cu}-\mathrm{K} \alpha$	Mo-K α	Mo-K α	Mo-K α	Mo-K α
Total reflections	3693	7474	6598	3262	7361
Unique reflections	$3470\left(R_{\text {int }}=0.012\right)$	$7186\left(R_{\text {int }}=0.014\right)$	$6395\left(R_{\text {int }}=0.017\right)$	$3103\left(R_{\text {int }}=0.011\right)$	$6985\left(R_{\text {int }}=0.016\right)$
Used reflections	$2615[I>3 \sigma(I)$]	$4253[I>3 \sigma(I)]$	$4070[I>3 \sigma(I)]$	$2263[I>3 \sigma(I)]$	5317 [$I>2 \sigma(I)$]
No. parameters	283	442	391	196	340
R (used reflections) ${ }^{\text {a }}$	0.036	0.036	0.033	0.029	0.045
R^{\prime} (used reflections) ${ }^{a}$	0.054	0.044	0.023	0.022	0.051
Goodness of fit	1.47	1.01	1.78	1.86	2.32
$\rho_{\text {max }}, \rho_{\text {min }} / \mathrm{e} \AA^{-3}$	1.0, -0.4	0.3, -0.3	0.4, -0.4	0.35, -0.41	0.71, -0.74

$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathbf{C O})\left(\mathbf{A s P h}_{3}\right)\right]$. A suspension of trans-[Ru(acac) $)_{2}$ $\left.\left(\mathrm{AsPh}_{3}\right)_{2}\right](140 \mathrm{mg}, 0.19 \mathrm{mmol})$ in toluene $\left(3 \mathrm{~cm}^{3}\right)$ was treated with CO (3 bar) at room temperature for 30 h to give a clear brown solution. The IR spectrum showed strong bands at 2057, 1983 and $1943 \mathrm{~cm}^{-1}$, the first two probably being due to $\left[\mathrm{Ru}(\mathrm{CO})_{2}(\mathrm{acac})_{2}\right]^{41}$ The solution was filtered through silica gel 60 with THF-hexane (1:9). The filtrate was evaporated to dryness and the resulting bright yellow solid washed with hexane. The yield of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{AsPh}_{3}\right)\right], \mathrm{mp} 158-162^{\circ} \mathrm{C}$, was ca. 50%.

X-Ray crystallography

Selected crystal data and details of data collection and structure refinement are in Table 7. All non-hydrogen atoms were refined anisotropically by full-matrix least squares except for the terminal methyl carbon atoms of the tert-butyl group of one of the two independent molecules of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}{ }^{-}\right.$ $\left(\mathrm{CNBu}^{t}\right)_{2}$]. These were disordered over two orientations and refined with isotropic displacement factors as two populations with occupancies of p and $(1-p)$ with restraints on their bond lengths and angles. The final refined value of p was $0.56(2)$. tert-Butyl hydrogen atoms were placed at calculated positions (C-H 0.95 A with staggered conformations) and not refined but were recalculated periodically. The acac hydrogen atoms were placed at calculated positions with torsion angles selected so as best to fit the peaks observed in a difference map (C-H $0.95 \AA$, tetrahedral or trigonal at the appropriate carbon atom).

CCDC reference number 186/1614.
See http://www.rsc.org/suppdata/dt/1999/3451/ for crystallographic files in .cif format.

Acknowledgements

We thank Mr Danne Rasmussen for preliminary experiments and Johnson-Matthey plc for a loan of ruthenium trichloride.

References

1 E. W. Abel, M. A. Bennett and G. Wilkinson, J. Chem. Soc., 1959, 3178; M. A. Bennett and G. Wilkinson, Chem. Ind., 1959, 1516 J. Müller and E. O. Fischer, J. Organomet. Chem., 1966, 5, 275.

2 M. O. Albers, T. V. Ashworth, H. E. Oosthuizen and E. Singleton, Inorg. Synth., 1989, 26, 68.
3 J. Halpern and B. R. James, Can. J. Chem., 1966, 44, 495.
4 G. Laurenczy and A. E. Merbach, J. Chem. Soc., Chem. Commun., 1993, 187.
5 B. M. Novak and R. H. Grubbs, J. Am. Chem. Soc., 1988, 110, 7542.
6 D. V. McGrath, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1991, 113, 3611
7 T. Karlen and A. Ludi, Helv. Chim. Acta, 1992, 75, 1604.
8 H. Lehmann, K. J. Schenk, G. Chapuis and A. Ludi, J. Am. Chem. Soc., 1979, 101, 6197.
9 M. G. Elliott and R. E. Shepherd, Inorg. Chem., 1988, 27, 3332.
10 M. G. Elliott, S. Zhang and R. E. Shepherd, Inorg. Chem., 1989, 28, 3036.

11 U. Kölle, G. Flunkert, R. Görissen, M. U. Schmidt and U. Englert, Angew. Chem., Int. Ed. Engl., 1992, 31, 440.
12 T. Sugaya, A. Tomita, H. Sago and M. Sano, Inorg. Chem., 1996, 35, 2692
3 M. A. Bennett, M. J. Byrnes and G. Chung, unpublished work.
14 P. Powell, J. Organomet. Chem., 1974, 65, 89.
15 K . Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd edn., Wiley-Interscience, New York, 1970, pp. 249-256.
16 P. S. Pregosin, in Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis, eds. J. G. Verkade and L. D. Quin, VCH, Deerfield Beach, FL, 1987, pp. 510-512.
17 P. L. Goggin, R. J. Goodfellow, S. R. Haddock, J. R. Knight, F. J. S. Reed and B. F. Taylor, J. Chem. Soc., Dalton Trans., 1974, 523
18 R. Favez, R. Roulet, A. A. Pinkerton and D. Schwarzenbach, Inorg. Chem., 1980, 19, 1356.
19 J. M. Jenkins and B. L. Shaw, J. Chem. Soc. A, 1966, 770.
20 J. G. Verkade, Coord. Chem. Rev., 1972/73, 9, 1.
21 D. A. Redfield, J. H. Nelson and L. W. Cary, Inorg. Nucl. Chem. Lett., 1974, 10, 727; D. A. Redfield, L. W. Cary and J. H. Nelson, Inorg. Chem., 1975, 14, 50.
22 A. Bright, B. E. Mann, C. Masters, B. L. Shaw, R. M. Slade and R. E. Stainbank, J. Chem. Soc. A, 1971, 1826

23 P. S. Pregosin and R. W. Kunz, Helv. Chim. Acta, 1975, 58, 423.
24 F. P. Dwyer, H. A. Goodwin and E. C. Gyarfas, Aust. J. Chem., 1963, 16, 42.
25 Z. Dauter, R. J. Mawby, C. D. Reynolds and D. C. Saunders, Acta Crystallogr., Sect. C, 1983, 39, 1194.
26 F. M. Conroy-Lewis, A. D. Redhouse and S. J. Simpson, J. Organomet. Chem., 1989, 366, 357.

27 D. W. Krassowski, J. H. Nelson, K. R. Brower, D. Hauenstein and R. A. Jacobson, Inorg. Chem., 1988, 27, 4294.

28 M. A. Bennett, G. A. Heath, D. C. R. Hockless, I. Kovacik and A. C. Willis, J. Am. Chem. Soc., 1998, 120, 932

29 M. A. Bennett, G. A. Heath, D. C. R. Hockless, I. Kovacik and A. C. Willis, Organometallics, 1998, 17, 5867.

30 H. Matsuzawa, Y. Ohashi, Y. Kaizu and H. Kobayashi, Inorg. Chem., 1988, 27, 2981; T. S. Knowles, B. J. Howlin, J. R. Jones, D. C. Povey and C. A. Amodio, Polyhedron, 1993, 12, 2921; T. S. Knowles, M. E. Howells, B. J. Howlin, G. W. Smith and C. A. Amodio, Polyhedron, 1994, 13, 2197; P. A. Reynolds, J. W. Cable, A. N. Sobolev and B. N. Figgis, J. Chem. Soc., Dalton Trans., 1998, 559.
31 M. I. Bruce, M. G. Humphrey, J. M. Patrick and A. H. White, Aust. J. Chem., 1983, 36, 2065.

32 H. Taube, in Survey of Progress in Chemistry, ed. A. F. Scott, Academic Press, New York, 1973, vol. 6, ch. 1; Pure Appl. Chem., 1979, 51, 901.
33 M. A. Bennett, H. Neumann, A. C. Willis, V. Ballantini, P. Pertici and B. E. Mann, Organometalics, 1997, 16, 2868.
34 R. D. Ernst, E. Melendez, L. Stahl and M. L. Ziegler, Organometalics, 1991, 10, 3635.
35 E. Melendez, R. Ilarraza, G. P. A. Yap and A. L. Rheingold, J. Organomet. Chem., 1996, 522, 1.

36 G. S. Patterson and R. H. Holm, Inorg. Chem., 1972, 11, 2285.
37 Y. Hoshino, Y. Yukawa, T. Maruyama, A. Endo, K. Shimizu and G. P. Sato, Inorg. Chim. Acta, 1990, 174, 41.

38 C. Grünwald, M. Laubender, J. Wolf and H. Werner, J. Chem. Soc., Dalton Trans., 1998, 833.
39 T. Kobayashi, Y. Nishina, K. Shimizu and G. P. Sato, Chem. Lett., 1988, 1137.
40 T. Hasegawa, T. C. Lau, H. Taube and W. P. Schaefer, Inorg. Chem., 1991, 30, 2921.
41 F. Calderazzo, C. Floriani, R. Henzi and F. L'Eplattenier, J. Chem. Soc. A, 1969, 1378.
42 A. Misono, Y. Uchida, M. Hidai and T. Inomata, Chem. Commun., 1968, 704.
43 J. D. Gilbert and G. Wilkinson, J. Chem. Soc. A, 1969, 1749.

44 M. A. M. Queirós and S. D. Robinson, Inorg. Chem., 1978, 17, 310.
45 S. Krompiec, J. Suwinski and R. Grodelny, J. Mol. Catal., 1994, 89, 303.

46 T. Manimaran, T-C, Wu, W. D. Klobucar, C. H. Kolich, G. P. Stahly, F. R. Fronczek and S. E. Watkins, Organometallics, 1993, 12, 1467.

47 J. D. Atwood, Inorganic and Organometallic Reaction Mechanisms, 2nd edn., VCH, Weinheim, 1997, p. 87.
48 M. Elian and R. Hoffmann, Inorg. Chem., 1975, 14, 1058.
49 J. K. Burdett, J. Chem. Soc., Faraday Trans. 2, 1974, 1599.
50 S. J. La Placa and J. A Ibers, Inorg. Chem., 1965, 4, 778.
51 T. G. Appleton, H. C. Clark and L. E. Manzer, Coord. Chem. Rev., 1973, 10, 335.
52 M. S. Lupin and B. L. Shaw, J. Chem. Soc. A, 1968, 741.
53 H. Remita, M. E. Brik, J. C. Daran and M. O. Delcourt, J. Organomet. Chem., 1995, 486, 283.

54 W. Strohmeier, K. Gerlach and D. von Hobe, Chem. Ber., 1961, 94, 164; W. Strohmeier, J. F. Guttenberger, H. Blumenthal and G. Albert, Chem. Ber., 1966, 99, 3419; U. Koelle, J. Organomet. Chem., 1977, 133, 53; J. M. Maher, R. P. Beatty, G. R. Lee and N. J. Cooper, Organomet. Synth., 1986, 3, 35.

55 J. Elzinga and H. Hogeveen, J. Chem. Soc., Chem. Commun., 1977, 705; F. Birencwaig, H. Shamai and Y. Shvo, Tetrahedron Lett., 1979, 2947.
56 M. W. Duckworth, G. W. A. Fowles and P. T. Greene, J. Chem. Soc. A, 1967, 1592; P. T. Greene, B. J. Russ and J. S. Wood, J. Chem. Soc. $A, 1971,3636$ and refs. therein.
57 G. Brauer, Handbook of Preparative Inorganic Chemistry, Academic Press, New York, 1965, vol. 2, p. 1806.
58 J. G. Gordon II, M. J. O'Connor and R. H. Holm, Inorg. Chim. Acta, 1971, 5, 381; J. E. Earley, R. N. Base and B. H. Berrie, Inorg. Chem., 1983, 22, 1836.

[^0]: \dagger Dedicated to Professor Helmut Werner, University of Würzburg, with best wishes on the occasion of his 65th birthday.
 Supplementary data available: rotatable 3-D crystal structure diagram in CHIME format. See http://www.rsc.org/suppdata/dt/1999/3451/

 Also available: NMR data for the complexes. For direct electronic access see http://www.rsc.org/suppdata/dt/1999/3451/, otherwise available from BLDSC (No. SUP 57625, 10 pp.) or the RSC Library. See Instructions for Authors, 1999, Issue 1 (http://www.rsc.org/dalton).

[^1]: \ddagger We have also solved the structure of a second modification, trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, which belongs to the same space group, $P \overline{1}$ (no. 2), with a 10.774(2), b 11.362(3), c 13.463(3) Å, a 66.78(2), $\beta 74.20(1), \gamma 86.95(2)^{\circ}$. The Ru-P distance in this solvate is $2.3575(8) \AA$; the other metrical parameters do not differ significantly from those in trans $-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{dppm})_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

